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Preface

I began writing this book with the encouragement and active support of my
colleagues, including young professionals joining financial firms who frequently
seek my recommendations on how to review all relevant statistical theory that is
useful for financial modeling used at the workplace. There are reputed textbooks
on individual topics such as regression, time series, and generalized linear models,
but few covering the complete spectrum of statistical methods used in quantitative
modeling in finance. This book was written to address that need and to provide a
resource on practical quantitative modeling tasks that can be tackled using statistical
methods. While most examples are drawn from the field of finance, students
and practitioners from other disciplines may find it useful for understanding the
concepts and identifying analogies to the modeling tasks they work on. This work
strikes a balance between theory and practice, providing an overview of theory and
illustrating it with practical examples.

This book assumes the reader is familiar with Python programming. Knowledge
of libraries such as statsmodels and sklearn is not required. During the course of
reading this book, the reader will acquire a synoptic understanding of frequently
used APIs available for the model implementations supported by these libraries.

I welcome feedback from readers on what they found helpful in the book and
where there is scope for improvement. A text focused on evolving practical concepts
must necessarily evolve in future editions to cover new applications and models.
This is particularly relevant with the increasing synergy between machine learning
and data science. Statistical concepts such as entropy, cross-entropy, maximum
likelihood, Gini impurity index, and Bayesian methods have become the vanguard of
a new generation of artificial intelligence models, such as Glove (global vectors for
word representation in NLP), double-Q learning in reinforcement learning (cross-
entropy), and random forests (Gini impurity index), to name a few. On a parallel
front, statistical models have been deployed as benchmarking tools during the
calibration and model fitting phase of machine learning algorithms and as tools for
ensuring ongoing quality controls during postproduction deployment.
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Introduction

Statistical methods are the cornerstone of many quantitative models. Their success
derives from clear and concise mathematical formulation that suggests imple-
mentation details, along with their ability to be implemented and executed on
ubiquitous, readily available computational hardware. Mathematical formulation of
such models endows them with a virtue of intelligibility – practitioners can readily
explain their features and acquire an intuitive understanding of how the models
will behave when used with different kinds of data. For example, statisticians
can readily explain the importance of uncorrelated error terms in ordinary least
squares and what kinds of data and model characteristics may exacerbate the
problem of correlated residuals in ordinary least squares (e.g., missing explanatory
variables). This intuitive understanding aids in the deployment of statistical models
to appropriate use cases, serves as a valuable verification method to ensure correct
implementation, and enables modelers to explain model choice to statisticians and
non-statisticians alike. In addition, they also serve as indispensable benchmarking
tools for artificial intelligence models and are frequently deployed as components
of advanced machine learning models. A comprehensive understanding of statistical
models is foundational for both data science and machine learning disciplines.

This book explains statistical modeling using a range of applications drawn from
the field of finance. It covers a wide swath of statistical modeling, beginning from
ordinary least squares (OLS) and culminating in generalized method of moments
(GMM) models used in econometrics. While the exegetical approach to describing
statistical modeling adopted in this book begins with an explanation of the model
followed by mathematical formulation, it is not obscured by excessive mathematics
and notation. It includes practical applications drawn from the field of finance, along
with hands-on code accessible online to illustrate the salient features of the model.
Implementing code leverages libraries such as statsmodels, scipy, and sklearn.
It also includes pseudo-code to aid explanation of code and models. By adopting
a practical, hands-on focus while leveraging widely used, open source model
implementations, this book enables readers to become experts at understanding
statistical models, judiciously decide when to use a particular model, and effectively
implement it using numerical libraries. It also enables the readers to write their
own model implementations, though in most circumstances, use of widely adopted
numerical libraries is preferred.

xv

https://avxhm.se/blogs/hill0



xvi Introduction

This book also provides a foundation for machine learning students to appreciate
the statistical foundations of some of the most widely used machine learning
algorithms, such as the naive Bayes method and the expectation-maximization (EM)
algorithm. Readers inclined toward machine learning applications will find a rich
variety of synergistic content between statistical methods and machine learning
algorithms. This is particularly true for models such as random forests that are
inspired by machine learning fundamentals such as decision trees and bagging
and also derive some of their most attractive properties, such as robustness to
overfitting, from statistical concepts like entropy, Gini impurity reduction, and
ensemble learning. By delineating the statistical properties of random forests,
along with demonstrating illustrative practical examples, this book provides a vista
into their versatility. It showcases a good example where machine learning and
statistics are being leveraged hand in hand to tackle complex problems that had
been heretofore regarded as intractable using only statistical methods.

The book concludes with a chapter showcasing how statistical models can be
used as benchmarking tools for machine learning algorithms.

https://avxhm.se/blogs/hill0



1Overview

This book begins with foundational statistical methods, including ordinary least
squares (OLS) and generalized linear models (GLM). A comprehensive discussion
on these two topics is undertaken in the first two chapters that explain all aspects
of theory, while drawing on relevant examples and coding exercises, to illustrate
concepts related with model calibration, hypothesis testing, and predicting. A
firm grasp of the concepts covered in the first two chapters is also critical for
understanding the concepts discussed in subsequent chapters.

Following GLM, the book covers Markov dynamic regime switching models
that are used in econometrics and in applied finance extensively. Sharing a number
of features with hidden Markov models, they constitute a versatile quantitative
methodology for fitting linear models for evolving environments. This chapter is
followed by Tobit models that are used for fitting censored data using a regression-
based model.

The following two chapters cover topics used more frequently by economists,
but may also be helpful for applied quantitative finance professionals. This includes
the generalized method of moments (GMM), including its applications in vector
auto-regressions (VAR). This chapter is followed by dynamic stochastic general
equilibrium models that have become the mainstay of econometric modeling used
at most central banks.

Finally, the book concludes with a chapter on using statistical models as a
benchmarking tool for machine learning models.

© Samit Ahlawat 2025
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2Linear Regression

Linear regression is the workhorse of statistical model development due to its
simplicity, intuitive appeal, and ubiquitous availability in numerical libraries and
toolkits. The model defines a linear parametric relationship between an endogenous
(dependent) variable and a group of exogenous (independent) variables, including
an optional constant. Parameters defining this relationship are predicted by fitting
the data using the linear model. In addition to predicting the parameters, the method
also furnishes confidence intervals for those estimates. The model can be written as
shown in Equation 2-1. ε represents the error between actual output, y, and predicted
output, ŷ, as shown in Equation 2-2.

y = Xβ + ε

y ∈ R
N , X ∈ R

N×(P+1) and β ∈ R
P+1

ε ∼ IID random variable

E[ε] = 0 and var(ε) = σ 2

(2-1)

ŷ = Xβ (2-2)

In Equation 2-1, y denotes the endogenous or dependent variable because the
model prescribes its definition in terms of exogenous or dependent variables.
X denotes the matrix of exogenous or independent variables, with the ith row
containing the values from the ith observation. This matrix is also called design
matrix and is typically augmented by adding a column of 1 values to account for the
constant term in the model. Let us assume there are P regressors or independent
variables and N equations. Including a constant, X can be written as shown in
Equation 2-3. X is a matrix of dimension (N, P + 1) when the constant is included
and of dimension (N, P ) when it is not included.

Let us consider a linear model with a constant. When the number of observations,
N, is equal to the number of parameters, P+1, there is a unique solution for the

© Samit Ahlawat 2025
S. Ahlawat, Statistical Quantitative Methods in Finance,
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4 2 Linear Regression

parameters β. This problem is known as interpolation because it fits the data points
exactly and ε = 0. If N is less than P+1, there are infinitely many solutions to fit
the data points exactly with ε = 0 for each of those. In practice, the number of
observations, N, is typically greater than P+1, and the linear model must predict
parameters β to produce the best fit to the data. Solving this problem is referred to
as linear regression.

X =

⎡
⎢⎢⎣

1 X0,0 X0,1 · · · X0,P−1

1 X1,0 X1,1 · · · X1,P−1

· · ·
1 XN−1,0 XN−1,1 · · · XN−1,P−1

⎤
⎥⎥⎦ (2-3)

β represents the parameter vector and can be written as a column vector, as shown
in Equation 2-4. Including the constant, there are P+1 parameters in the β column
vector.

β =

⎡
⎢⎢⎣

α

β0

· · ·
βP−1

⎤
⎥⎥⎦ (2-4)

ε in Equation 2-1 is a random variable and represents the error. It has the
following three properties, known as Gauss-Markov assumptions. The significance
of the assumptions in solving the linear model using ordinary least squares (OLS)
is described later.

1. E[ε|X] = 0. This condition states that the errors ε are independent of regressors
X and have mean 0.

2. var(εi) = σ 2 < ∞. This condition states that the errors are homoskedastic
(constant variance).

3. cov(εi, εj ) = E[εiεj |X] = 0. This assumption states that the errors are
uncorrelated. The last two assumptions jointly imply that the variance-covariance
matrix of the errors, ε, is σ 2I where I is the identity matrix.

2.1 Solving OLS

Ordinary least squares can be solved using the method of normal equations or QR
factorization. Normal equations proceed from the mean-square objective function
for minimizing the difference between observed and actual model outputs, as shown
in Equations 2-5 and 2-6. Normal equations are commonly used for solving ordinary
least squares due to their simplicity and intuitive geometric interpretation. Owing
to the greater numerical robustness of QR factorization compared with normal
equations, most numerical libraries use QR factorization.

https://avxhm.se/blogs/hill0



2.1 Solving OLS 5

2.1.1 Loss Function

In order to solve an ordinary least squares model, it is necessary to define an
objective function. This is required because unlike interpolation, there is no solution
for β that fits the data y and X exactly using the linear relationship y = Xβ. Let us
try to minimize mean square errors of fitting the linear model to data, as shown in
Equation 2-5.

MSE =
∑N

i=1 ε2i

N
(2-5)

Model parameters, β, are obtained by minimizing this objective function with
respect to the parameters. Let us rewrite the objective function in terms of the model
parameters, β, as shown in Equation 2-6. SSR denotes the sum of square residuals,
εi . The derivation uses the fact that y′Xβ = β ′X′y because both quantities are scalar
and one side can be obtained by taking the transpose of the other.

β = argmin
β

∑N
i=1 ε2i

N

= argmin
β

N∑
i=1

ε2i

SSR =
N∑

i=1

ε2i

= (y − Xβ)′ (y − Xβ)

= y′y − y′Xβ − β ′X′y + β ′X′Xβ

= y′y − 2β ′X′y + β ′X′Xβ

(2-6)

Let us minimize the objective function by setting its derivative with respect to
model parameters, β, to zero as shown in Equation 2-7. It is customary to denote
the computed value of β as β̂ to underscore the fact that the original system of
equations has no unique solution.

∂SSR

∂β
= 0

− 2X′y + 2X′Xβ̂ = 0

�⇒ X′y = X′Xβ̂

�⇒ β̂ = (
X′X

)−1 X′y

(2-7)

https://avxhm.se/blogs/hill0



6 2 Linear Regression

Taking the second derivative of the objective function with respect to β shows
that the optimum point is a minimum, as shown in Equation 2-8. X′X is a positive
definite square matrix with an inverse.

∂2SSR

∂β2 = 2X′X ≥ 0 (2-8)

2.1.2 Variance of OLS Estimator

OLS fits the data using an objective function; therefore, it is natural to ask the
question: What is the variance of the estimated coefficients? This section derives
an analytical formula for the variance. Under certain assumptions, the variance
of the OLS estimator can be shown to be the least among a family of linear
models. The assumptions are known as Gauss-Markov assumptions, and the OLS
solution to a linear model satisfying those assumptions is said to be BLUE – Best
Linear Unbiased Estimator. Before describing these properties in more detail, let
us first derive an expression for the variance of parameters, β. The derivation is
illustrated in Equation 2-9. β̂ denotes the predicted values of model parameters from
Equation 2-6. Due to the symmetry of the variance estimator in Equation 2-9, it is
often called the sandwich estimator.

y = Xβ + ε

X′y = X′Xβ̂ from Equation 2-6

∴ X′ (Xβ + ε) = X′Xβ̂

β̂ = β + (
X′X

)−1 X′ε

∴ β̂ − β = (
X′X

)−1 X′ε

�⇒ var(β̂) = E

[(
β̂ − β

) (
β̂ − β

)′]

= E

[(
X′X

)−1 X′ε
((

X′X
)−1 X′ε

)′]

= E
[(

X′X
)−1 X′εε′X

(
X′X

)−1
]

= (
X′X

)−1 X′E
[
εε′]X

(
X′X

)−1

(2-9)

In order to get the last equation in Equation 2-9, we assume that the errors, ε, are
uncorrelated with exogenous variables, X. Further, let us assume that the errors are
homoskedastic, i.e., E

[
εε′] = σ 2I, where I is the identity matrix. With these two



2.1 Solving OLS 7

assumptions, the variance-covariance matrix of error terms can be simplified to the
expression shown in Equation 2-10.

var(β̂) = (
X′X

)−1 X′σ 2IX
(
X′X

)−1

= σ 2 (X′X
)−1 X′X

(
X′X

)−1 I

= (
X′X

)−1
σ 2

where σ 2 =
∑N−P−1

i=1 ε2i

N

P + 1 = number of free parameters in the linear model

(2-10)

2.1.3 Gauss-Markov Assumptions

Gauss-Markov assumptions are a set of assumptions required to establish that the
OLS estimator is the best linear unbiased predictor of a linear model’s parameters.
The assumptions are listed below:

1. Errors ε are independent of exogenous variables X and E[ε|X] = 0. This
condition is required to establish that the OLS predictor β̂ is an unbiased
predictor of β. This can be seen from Equation 2-11.

β̂ − β = (
X′X

)−1 X′ε

�⇒ E
[
β̂ − β

]
= E

[(
X′X

)−1 X′ε
]

= (
X′X

)−1 X′E [ε|X] = 0

�⇒ E
[
β̂
]

= E [β]

(2-11)

2. Errors ε have finite and constant variance, σ 2.
3. Errors ε have zero correlation. The above two assumptions imply that the

variance-covariance matrix of errors is σ 2I.

In addition, if errors ε have a normal distribution, the OLS estimator is the
best unbiased estimator. Normal errors, however, are not a part of Gauss-Markov
assumptions, and even in its absence, OLS is the best linear unbiased estimator as
discussed in the next subsection. However, without normality of errors, there could
be better non-linear estimators of β.
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2.1.4 BLUE: Best Linear Unbiased Estimator

When Gauss-Markov conditions are satisfied by a linear regression model, OLS is
the best linear unbiased estimator of the model’s parameters. The unbiased nature
of parameter estimates was shown in Section 2.1.3. Parameter estimates are linear
as can be seen from Equation 2-7.

In order to prove that OLS is the best linear estimator, one must show that it has
the least variance in the family of linear estimators. The OLS predictor is given by
Equation 2-12.

β̂ = (
X′X

)−1 Xy (2-12)

Let us consider a general class of unbiased linear estimators, β̃, as shown in
Equation 2-13.

β̃ =
(

D + (
X′X

)−1 X′) y

with condition DX = 0
(2-13)

Condition DX = 0 in Equation 2-13 is required for the unbiased estimate. This
can be seen by replacing y with Xβ + ε, as shown in Equation 2-14.

β̃ =
(

D + (
X′X

)−1 X′) (Xβ + ε)

= DXβ + (
X′X

)−1 X′Xβ +
(

D + (
X′X

)−1 X′) ε

= β +
(

D + (
X′X

)−1 X′) ε

∴ E
[
β̃
]

= β

(2-14)

Now let us show that the variance of the OLS estimator is the minimum in
the class of linear estimators. Using Equation 2-14, we can write the variance
of the general linear estimator as shown in Equation 2-15. From Equation 2-10,(
X′X

)−1
σ 2 is the variance of the OLS estimator. This establishes the assertion that

the OLS estimator has the least variance in the class of linear estimators of β.

var(β̃) =
(
β̃ − β

) (
β̃ − β

)′

=
(

D + (
X′X

)−1 X′) ε
((

D + (
X′X

)−1 X′) ε
)′

=
(

D + (
X′X

)−1 X′) εε′ (D′ + X
(
X′X

)−1
)
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= σ 2
(

D + (
X′X

)−1
X′) (D′ + X

(
X′X

)−1
)

(2-15)

= σ 2
(

DD′ + (
X′X

)−1 X′D′ + DX
(
X′X

)−1 + (
X′X

)−1
)

= σ 2
(

DD′ + (
X′X

)−1
)

∵ DX = 0 and X′D′ = 0

≥ (
X′X

)−1
σ 2

2.1.5 Residuals: Standardized and Studentized

In the linear model y = Xβ + ε, ε is the true residual, computed using the true but
unknown parameter values, β. This residual satisfies the Gauss-Markov assump-
tions. Using the computed value of parameters, β̂, we can calculate estimated
residuals, ε̂. The relationship between calculated residuals and actual residuals
is shown in Equation 2-16. Standardized residuals are obtained by dividing
calculated residuals with their variance. However, we only know that the variance
of actual residuals is σ 2I, by Gauss-Markov assumption. The expression for the
variance of calculated residuals is shown in Equation 2-17. The hat matrix, H,
is defined as X

(
X′X

)−1 X′. Standardized residuals follow Gauss-Markov assump-
tions, i.e., are independent and identically distributed and have mean 0 and a finite
variance, σ 2. Variance is calculated using Equation 2-10, using calculated residuals
ε̂i .

ŷ = Xβ̂

y = Xβ + ε required in Gauss-Markov assumptions

y = Xβ̂ + ε̂ known from OLS

∴ ε̂ = y − Xβ̂

=
(

I − X
(
X′X

)−1 X′) y from Equation 2-12

= (I − H) y

= (I − H) (Xβ + ε)

= (I − H) Xβ + (I − H) ε

=
(

X − X
(
X′X

)−1 X′X
)

β + (I − H) ε

=
(

I − X
(
X′X

)−1 X′) ε

∴ ε̂ = (I − H) ε

(2-16)
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var(ε̂i) = E
[
(I − H) εε′ (I − H)′

]

= (I − H) E
[
εε′] (I − H)′

= σ 2 (I − H) (I − H)′

= σ 2 (I − 2H + HH′)

= σ 2
(

I − 2H + X(X′X)−1X′X(X′X)−1X′)

= σ 2 (I − 2H + H)

= σ 2 (I − H)

(2-17)

Standardized residuals, εi,std, are calculated by dividing computed residuals
with their variance, as shown in Equation 2-18.

εi,std = ε̂i√
var(ε̂i)

= ε̂i√
σ 2 (I − H)

= ε̂i

σ
√
1 − hii

where σ =
√∑N

i=1

(
ε̂i

)2
N − P − 1

(2-18)

A high or low value of standardized residual indicates that the point is an outlier.
It is customary to consider a point with standardized residual greater than three
in magnitude an outlier. Standardized residuals, though effective if ferreting out
outliers, cannot spot outliers that are also highly influential points. For that, we need
studentized residuals.

Studentized residuals, t , are used to assess the presence of points that influence
a linear model’s computed parameters to such an extent that they can no longer be
deemed as outliers using standardized residuals. Studentized residuals are computed
by excluding a point from regression, followed by computation of residual as yi−ŷi ,
where ŷi denotes the predicted response value using the linear model that was
fitted after excluding the ith point. Standardizing the residuals computed in this
fashion gives studentized residuals. Calculating studentized residuals by performing
N regressions, excluding each data point one at a time is computationally expensive.
Instead, the expression shown in Equation 2-19 can be used for this purpose that
circumvents the calculation of auxiliary regressions. εi,std denotes the standardized
residual.

Asymptotically, studentized residuals follow the Student’s t-distribution with
zero mean, one standard deviation, and N −P − 1 degrees of freedom. For large N,
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this distribution is close to a standard normal distribution.

ti = εi,std

√
N − P − 2

N − P − 1 − ε2i,std
(2-19)

2.1.6 Influential Points

Influential points are those that have an outsized impact on fitted parameter values
of a model. While fitting a linear model, two kinds of influential points can be
identified: those with extreme values of response variable, y, and those with extreme
values of input variable, X.

1. Outlier: These are points with an extreme value of response variable, y. As a rule
of thumb, points falling outside three standard deviations of y around its mean,
i.e., y /∈ μ ± 3σ , may be regarded as outliers. For a more rigorous definition, one
could use standardized residuals and classify points with εi,std greater than three
as an outlier.

2. Points with high leverage: The leverage of a point is defined as the corre-
sponding diagonal value of the hat matrix, H, and denotes the extent to which
independent values of an observation differ from that of other observations.
Points with high leverage are not necessarily influential. In order to understand
leverage, two noteworthy properties of the hat matrix must be mentioned:

• All diagonal elements of the hat matrix, hi,i , obey the relation 0 ≤ hi,i ≤ 1.
This is established in Equation 2-20.

H2 =
(

X(X′X)−1X′X(X′X)−1X′)

= H

∴ hi,i =
p+1∑
k=1

hi,khk,i

=
p+1∑
k=1

hi,khi,k

= h2i,i +
p+1∑

k=1,k �=i

h2i,k because H is symmetric

≥ h2i,i

∴ 0 ≤ hi,i ≤ 1

(2-20)
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• The average of leverage values is equal to P+1
N

. This is established in
Equation 2-21.

P+1∑
i=1

hi,i = trace(X(X′X)−1X′)

= trace((X′X)−1XX′)

= trace(I) = P + 1

∴ average(hi,i) = P + 1

N

(2-21)

Using these properties, if the leverage value of a point exceeds thrice its average
value, 3P+1

N
, it can be deemed to be an influential point.

It can be shown that leverage values, hi,i , are given by Equation 2-22.

hi,i = 1

P + 1
+ (xi − x̄)2

∑P+1
j=1

(
xj − x̄

)2 (2-22)

2.2 Normal Equations

Normal equations are a method of solving OLS by inverting the matrix obtained in
Equation 2-7, X′X. This method derives its name from the geometric interpretation
of equation obtained after minimizing the mean square error.

As was observed earlier, a least squares problem involves an overdetermined
system of linear equations. If the dimension of design matrix X is (M,N + 1) –
where M denotes the number of observations or rows, N denotes the number of free
parameters, and the model includes a constant – M must be larger than N + 1, and
the rank of X is N + 1. This condition ensures that the system has a unique least
squares solution. From Equation 2-7, the solution to the linear model using OLS
was derived to be

(
X′X

)
β̂ = X′y. The dimension of X′X is (N + 1, N + 1) with a

rank of N + 1. Being a square matrix with full column and row rank, it has a unique
inverse and the OLS solution for β can be written as

(
X′X

)−1 X′y. If the rank of
X is less than N + 1, there are infinitely many solutions to the linear model that
minimize the sum of residuals.

Geometrically, Xβ denotes the space of vectors spanned by matrix X. For
different values of β, Xβ is a vector of dimension M but rank N + 1. To understand
this fact, observe that X has a column span of N +1, i.e., N +1 linearly independent
columns. A linear combination of N + 1 columns can only span a subspace of
dimension N + 1. y, on the other hand, has a full rank of M , which, according
to our assumption, is greater than N + 1. Depicting the subspace spanned by Xβ
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Fig. 2-1. Geometric Depiction of OLS Solution Using Normal Equations

as a hyperplane of dimension N + 1, vector y lies outside that plane, as shown in
Figure 2-1.

Similarly, X′y is a vector of rank N +1, lying in the subspace spanned by X. This
vector is shown in Figure 2-1. A solution to OLS is given by β̂ =

(
X′X

)−1 X′y, as
was shown in Equation 2-7. Premultiplying β by X gives X

(
X′X

)−1 X′y which is a
vector in the subspace spanned by X that minimizes the residual between this vector
and y. Intuitively, this should be the vector obtained by orthogonally projecting

vector y onto the subspace spanned by X. This shows that the X
(
X′X

)−1 X′ matrix
is an orthogonal projector for X, projecting an out-of-plane vector y orthogonally
onto its subspace as depicted in Figure 2-1. Normal equations derive their name
from this geometric property.

2.3 QR Factorization

QR factorization is numerically more stable than OLS for solving a linear regression
model. To see why this is true, consider a matrix X as shown in Equation 2-23. εmach
represents the smallest floating-point number that can be represented in machine
precision. For a 32-bit floating-point number, this is 2-32, and for a 64-bit floating-
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point number, it is 2-64. If a number is smaller than εmach, it is represented as 0.√
εmach is bigger than εmach. Let δ represent a number smaller than

√
εmach.

X =
⎡
⎣
1 1
δ 0
0 δ

⎤
⎦ (2-23)

Normal equations involve the product X′X. Using X from Equation 2-23, this
matrix product is evaluated in Equation 2-24.

X′X =
[
1 + δ2 1

1 1 + δ2

]
(2-24)

δ2 is a number smaller than εmach and becomes zero. This makes X′X singular
to machine precision, and the model parameters cannot be solved using normal
equations.

QR factorization avoids this numerical instability by performing a triangular
decomposition on X, as described below.

Let Q denote an orthonormal matrix with the property that its column vectors are
orthogonal to each other and have a norm of 1. This property implies that Q′Q = I.
R is an upper triangular matrix. As before, denote the dimensions of X by (M, N+1)
with M > N+1. Adding 1 to N accounts for the additional row due to inclusion of
constant in β. Q is of dimension (M, M), while R is of dimension (M, N+1). Only
the upper triangular entries in R have non-zero values. Writing Q as [Q1, Q2] where
Q1 is a matrix comprising first N+1 columns of Q and Q2 comprises the remaining
columns, we get Equation 2-25. R1 is a reduced form of upper triangular matrix R.
Dimensions of R1 are (N+1, N+1). Being the upper triangular matrix, equation Q′

1y
= R1β can be solved using back-substitution.

y = Xβ

= QRβ

= [Q1Q2]

[
R1

0

]
β

∴
[
R1

0

]
β = [

Q′
1Q′

2

]
y

[
R1

0

]
β =

(
Q′

1y
Q′

2y

)

(2-25)
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The OLS solution is obtained by minimizing the norm of the residual vector. The
residual vector of Equation 2-25 is shown in Equation 2-26, and the minimum norm
solution corresponds to solving the linear system Q′

1y = R1β.

min
β

‖y − Xβ‖2

= min
β

∥∥R1β − Q′
1y
∥∥2 + ∥∥Q′

2y
∥∥2

= min
β

∥∥R1β − Q′
1y
∥∥2

∴ solve R1β = Q′
1y

(2-26)

There are three different methods of performing QR decomposition on X:
Householder transformation, Givens rotation, and Gram-Schmidt orthogonalization.
These are discussed below.

2.3.1 Householder Transformation

Householder transformation constructs the orthogonal matrix Q by eliminating all
entries shown with ∗ and modifying the element marked by x in Equation 2-27.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x · · ·
∗ x · ·
∗ ∗ x ·
∗ ∗ ∗ x

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2-27)

Let a denote the column vector at or below position x, as was shown in
Equation 2-27. Denoting the unit vector that has one in position x and zero
elsewhere as e1, we want to derive an expression for a matrix H that rotates a to
a vector along e1. Because the transformation must preserve vector length, we can
write H as shown in Equation 2-28. The geometric interpretation of the operation of
matrix H on a is shown in Figure 2-2.

Ha = ‖a‖2 e1

= −v + a

∴ v = a − ‖a‖2 e1

(2-28)
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Fig. 2-2. Geometric
Interpretation of Householder
Transformation of Vector a

Using geometric properties, vector v can be written as twice the length of the
projection of vector a on vector v, as shown in Equation 2-29.

v = 2
v′a
v′v

v (2-29)

Substituting the expression for v from Equation 2-29 into Equation 2-28, we get
an expression for Householder transformation matrix H in terms of v, as shown in
Equation 2-30.

Ha = a − 2
v′a
v′v

v

= a − 2
vv′

v′v
a

=
(

I − 2
vv′

v′v

)
a

∴ H =
(

I − 2
vv′

v′v

)

v = a ± ‖a‖2 e1

(2-30)

The sign in the expression for vector v in Equation 2-30 is chosen to avoid
cancellation with the component of a along the direction of e1.

Using Householder transformations for column vectors of X, we transform it to
upper triangular matrix R. Inverting the transformations, we can get a representation
of Q and R matrices, as shown in Equation 2-31.

HN+1 · · · H1X = R

X = (HN+1 · · · H1X)′ R

�⇒ Q = (HN+1 · · · H1X)′
(2-31)
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Listing 2-1. Applying Householder Tranformations to Obtain QR Decomposition of a Matrix

1 import numpy as np
2

3

4 class HouseHolder(object) :
5 def __init__ ( self , dtype=np.int32 ) :
6 self .dtype = dtype
7

8 def houseHolderVecToQ(self, V):
9 X0 = np.eye(V.shape [0], dtype=self .dtype)

10 factor = −2 / np.dot(V[:, 0], V[:, 0])
11 X0 += factor ∗ np.einsum("i , j−>ij", V[:, 0], V[:, 0])
12 for j in range (1, V.shape[1]) :
13 factor = −2 / np.dot(V[:, j ], V[:, j ])
14 X1 = np.eye(V.shape [0], dtype=self .dtype)
15 X1 += factor ∗ np.einsum("i , j−>ij", V[:, 0], V[:, 0])
16 X0 = np.einsum(" ij , jk−>ik", X1, X0)
17 return X0
18

19 def qrDecompose(self, matrix) :
20 nrow, ncol = matrix .shape
21 V = matrix .copy()
22 R = np.zeros (( ncol , ncol) , dtype=self .dtype)
23 for j in range(ncol) :
24 R[0: j+1, j ] = V[0:j+1, j ]
25 V[0:j , j ] = 0
26 v = V[:, j ]
27 xlen = np.dot(v, v)
28 mult = 1 if v[ j ] >= 0 else −1
29 v[ j ] += mult ∗ xlen
30 # v is now the vector in householder transformation
31 vlen = np.dot(v, v)
32 for i in range( j+1, ncol) :
33 V[:, i ] += − 2 ∗ (np.dot(v, V[:, i ]) / vlen) ∗ v
34

35 Q = self .houseHolderVecToQ(V)
36 return Q, R

The code for applying Householder transformations to compute QR decomposi-
tion of a matrix is shown in Listing 2-1.

Code Explanation
Method qrDecompose of class HouseHolder performs QR decomposition in
Listing 2-1. This method accepts a two-dimensional matrix passed as a numpy array.
It returns Q and Rmatrices and leaves the input matrix unmodified. The first for loop
inside the method iterates over each row of the matrix and applies transformation
shown in Equation 2-28 to the elements on and below the diagonal in column j.
Elements above diagonal will be reduced to zero by Householder transformation
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called later. In order to avoid cancellation of significant digits, it uses a multiplier
that is set to −1 if the vector element on diagonal is negative. Iterating over all the
columns, we obtain the transformed V matrix with all elements above diagonal set
to zero. This matrix contains the HouseHolder vectors as columns.

After this, method houseHolderVecToQ is called. This method applies the
transformations shown in Equation 2-31 to obtain matrices Q and R.

2.3.2 Givens Rotation

Givens rotation involves selecting θi to transform the ith column vector, ai, into a
vector along an orthogonal direction by eliminating all entries below a diagonal
element, as shown in Equation 2-32. Due to the property cos2 θi + sin2 θi = 1,
the transformation preserves vector norm and yields an upper triangular matrix
R in the end. However, it is computationally more expensive than Householder
transformation or Gram-Schmidt orthogonalization.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 0 · · · 0
· · · · · · · · · · · · ·
0 · · · cos θi · · · sin θi · · · 0
· · · · · · · · · · · · ·
0 · · · − sin θi · · · cos θi · · · 0
· · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1i

· · ·
aii

· · ·
aji

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1i

· · ·
˜aii

· · ·
0

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2-32)

2.3.3 Gram-Schmidt Orthogonalization

Gram-Schmidt orthogonalization obtains QR decomposition of a matrix X by
making the columns Xj orthogonal to column Xi for all columns j > i. There are
two flavors of this process: classical Gram-Schmidt and modified Gram-Schmidt.
Classical Gram-Schmidt is illustrated in pseudo-code 1.

Algorithm 1 Classical Gram-Schmidt Orthogonalization
Require: Matrix X of dimension (M, N), with column vectors = (x1, · · · , xN).
1: for j = 1, 2, · · · , N do
2: v = xj
3: for i = 1, 2, · · · , j-1 do
4: Rij = q′

ixj
5: v = v - Rij qi
6: end for
7: Rjj = ‖v‖
8: qj =

v
Rjj

9: end for
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Classical Gram-Schmidt is numerically unstable because it suffers from loss of
orthogonality of vectors qi. Also, if two column vectors of X, xi and xj, are nearly
parallel, v may become close to zero due to cancellation.

Modified Gram-Schmidt is numerically more stable. It involves using the existing
vector v that has components along previous orthogonal vectors qj removed in place
of aj. The algorithm is sketched in pseudo-code 2.

Algorithm 2 Modified Gram-Schmidt Orthogonalization
Require: Matrix X of dimension (M, N), with column vectors = (x1, · · · , xN).
1: for j = 1, 2, · · · , N do
2: v = xj
3: for i = 1, 2, · · · , j-1 do
4: Rij = q′

iv
5: v = v - Rij qi
6: end for
7: Rjj = ‖v‖
8: qj =

v
Rjj

9: end for

The implementation of classical and modified Gram-Schmidt orthogonalization
code is shown in Listing 2-2.

Listing 2-2. Classical and Modified Gram-Schmidt Orthogonalization Method to Obtain QR
Decomposition of a Matrix

1 import numpy as np
2

3

4 class GramSchmidt(object):
5 def __init__ ( self , dtype=np.int32 ) :
6 self .dtype = dtype
7

8 def qrDecomSimple(self, matrix) :
9 nrow, ncol = matrix .shape

10 Q1 = matrix .copy()
11 R = np.zeros (( ncol , ncol) , dtype=self .dtype)
12 for j in range(ncol) :
13 for i in range( j ) :
14 R[i , j ] = np.dot(Q1[:, i ], matrix [:, j ])
15 Q1[:, j ] −= R[i, j ] ∗ Q1[:, i ]
16 R[j , j ] = np.dot(Q1[:, j ], Q1[:, j ])
17 Q1[:, j ] /= R[j , j ]
18 return Q1, R
19

20 def qrDecompose(self, matrix) :
21 ''' Modified ( stable ) version of Gram Schmidt decomposition '''
22 nrow, ncol = matrix .shape
23 Q1 = matrix .copy()
24 R = np.zeros (( ncol , ncol) , dtype=self .dtype)
25 for j in range(ncol) :
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26 for i in range( j ) :
27 R[i , j ] = np.dot(Q1[:, i ], Q1[:, j ])
28 Q1[:, j ] −= R[i, j ] ∗ Q1[:, i ]
29 R[j , j ] = np.dot(Q1[:, j ], Q1[:, j ])
30 Q1[:, j ] /= R[j , j ]
31 return Q1, R

Code Explanation
Inside class GramSchmidt, method qrDecomSimple applies the classical Gram-
Schmidt orthogonalization sketched in pseudo-code 1. This method accepts a two-
dimensional numpy array as input and returns Q and R matrices, leaving the input
matrix unmodified. The outer j for loop iterates over all columns of the matrix,
while the inner i for loop makes the columns from 1 to j − 1 orthogonal to column
j . After each inner i loop completes an iteration, it calculates qj . In this way, it
keeps a set of orthogonal vectors qj that are mutually orthogonal among all vectors
from 1 to j . Finally, when the outer loop finishes, it has the final set of orthogonal
vectors.

Modified Gram-Schmidt orthogonalization is implemented inside method qrDe-
compose according to pseudo-code 2. As explained earlier, it uses the computed
orthogonal vectors vi in place of xi inside the inner for loop.

2.4 Singular Value Decomposition

Singular value decomposition, or SVD, is another method of solving OLS that is
more stable than QR factorization. If matrix X is rank deficient, i.e., if two or more
of its column vectors are linearly dependent, Gram-Schmidt orthogonalization may
give division-by-zero errors. Using SVD, we can identify singular values that lead
to rank deficiency.

SVD of a matrix X is shown in Equation 2-33. If X has dimensions (M, N); U, �,
and V are matrices of dimensions (M, M), (M, N), and (N, N), respectively. Further,
U and V are orthogonal matrices, while � is a diagonal matrix with diagonal entries
σii ≥ 0 ordered by descending value. Diagonal entries, σii , are also called singular
values.

X = U�V′

� =

⎛
⎜⎜⎜⎜⎜⎝

σ11 0 · · · 0
0 σ22 · · · 0
· · · · · ·
0 0 0 σNN

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

(2-33)
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Using SVD, the solution to Xβ = y can be written as shown in Equation 2-34.

β = �−1U′yV

=
N∑

i=1

u′
iyvi

σii

where σii �= 0
(2-34)

SVD can be obtained using the eigenvalue decomposition of X′X. This can be
observed by multiplying the SVD of X and observing that U′U = I, as shown in
Equation 2-35. Similarly, the eigenvalue decomposition of XX′ yields the square of
singular vectors, �2 and U.

X′X = V�′U′U�V′

= V�2V′

∴
(
X′X

)
V = �2V

XX′ = U�V′V�′U′

= U�2U′

∴
(
X′X

)
U = �2U

(2-35)

A more numerically stable algorithm is the Golub-Kahan method that involves
using Householder transformations on X to obtain a bidiagonal matrix, followed by
an iterative algorithm to obtain a diagonal matrix.

2.5 Maximum Likelihood

The maximum likelihood method is based on maximizing the probability of observ-
ing the data, assuming the residuals belong to a family of parametric probability
distribution. It is common to use the Gaussian distribution parameterized by its mean
and variance as the probability distribution of residuals. Under this assumption, the
maximum likelihood method applied to the linear model is equivalent to OLS.

In order to appreciate this, consider the linear model with residuals, ε, following
a normal distribution. Assuming the model is unbiased, the mean of the normal
distribution is zero. Assuming the residuals are homoskedastic, the variance of ε can
be denoted by σ 2. The likelihood of observing the data is shown in Equation 2-36.

y = X′β + ε where ε ∼ N(0, σ 2)

Pr(X|β, σ 2) =
M∏
i=1

1√
2πσ 2

exp

(
1

2

(
yi − xiβ

σ

)2
)

(2-36)
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For the exponential class of probability functions, it is more convenient to
work with log-likelihood which is the natural logarithm of probability derived in
Equation 2-36. The logarithm being a monotonic increasing function, the maximum
of log-likelihood corresponds to the maximum of probability. The expression for
log-likelihood is shown in Equation 2-37.

L(X|β, σ 2) = log(Pr(X|β, σ 2))

= −M log(2πσ 2)

2
− 1

2

M∑
i=1

(
yi − xiβ

σ

)2 (2-37)

Maximizing the log-likelihood with respect to σ 2 and β gives Equation 2-38. σ 2

is the residual variance as observed from the data, and β corresponds to the system
of normal equations, establishing the equivalence of the maximum likelihood
method and OLS under the assumption of normal, homoskedastic residuals. β being
a vector of parameters, we must maximize L with respect to each component of β,
as denoted by βj , in Equation 2-38.

∂L

∂σ 2
= 0

�⇒ −M

2
+ 1

2

M∑
i=1

(
yi − xiβ

σ

)2

= 0

�⇒ M =
∑M

i=1 (yi − xiβ)2

M

∂L

∂βj

= 0

�⇒ xj

M∑
i=1

(yi − xiβ) = 0

�⇒ X′y = X′Xβ

(2-38)

2.6 Confidence Intervals

Assuming a normal distribution for residuals, one can derive confidence inter-
vals for parameter estimates obtained using OLS. However, once Gauss-Markov
assumptions of homoskedasticity and zero autocorrelation among residuals are
relaxed, it becomes necessary to modify expressions for confidence intervals
using heteroskedasticity and autocorrelation (HAC) consistent standard errors, as
described in this section.
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A confidence interval indicates the range of parameter values within which the
actual but unknown parameter value is located with some level of probability. OLS
uses an empirical batch of data y and X to predict β. It is natural to ask that if one
used a different batch of data, how much could parameter estimates vary from the
estimates obtained using the random sample. In order to answer this question, we
must make an assumption that the empirical data is a random (unbiased) sample
from the underlying true but unknown data distribution.

Under Gauss-Markov assumptions, it was shown in Equation 2-10 that the
estimated parameters of the linear model, β̂, are normally distributed with mean
β and variance (X′X)−1σ 2. This implies that with confidence α, parameter estimate
β̂ lies in the interval shown in Equation 2-39, where 
−1 denotes the inverse of
CDF (cumulative density function) of the Gaussian distribution.

β̂ ∼ N(β, (X′X)−1Iσ 2)

− 
−1
(
1 − α

2

)
≤ β̂ − β

σ
√

(X′X)−1I
≤ 
−1

(
1 − α

2

)

with probability α

[
βlow, βhigh

] = β̂ ± σ
√

(X′X)−1I
−1
(
1 − α

2

)

(2-39)

2.6.1 Heteroskedasticity Consistent Standard Errors

When residuals ε no longer have same variance, the second Gauss-Markov assump-
tion is violated. The OLS solution is still consistent because the first Gauss-Markov
assumption of independence between ε and exogenous regressors X holds (refer
to Equation 2-11). However, the solution is no longer best, i.e., it does not have
minimum variance. To see this fact, notice that E

[
εε′] in Equation 2-9 is a diagonal

matrix with entries ε2i . These entries represent statistical estimates of variance for
each residual. The expression can no longer be simplified and is greater than the
minimum variance of a linear estimator, shown in Equation 2-15. Consequently,
confidence intervals obtained using variance (X′X)−1Iσ 2 in Equation 2-39 are
overly optimistic (i.e., small) because the actual variance of estimated parameters
shown in Equation 2-40 is larger. White [1] derived this heteroskedasticity consis-
tent variance estimator, also known as the HC0 estimator.

Variance
(
β̂
)

= (
X′X

)−1 X′diag
(
ε2i

)
X
(
X′X

)−1 (2-40)

In practice, owing to finite sample size, White’s heteroskedasticity consistent
variance estimator gives biased estimates of variance. To fix this problem, variants
of this estimator have been proposed.
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The HC1 estimator accounts for the finite sample bias in HC0 by multiplying it
with M

M−N−1 as shown in Equation 2-41, where M is the number of observations or
rows and N + 1 is the number of parameters, including the constant.

HC1 = M

M − N − 1

(
X′X

)−1 X′diag
(
ε2i

)
X
(
X′X

)−1

where X has dimensions M × (N + 1)

(2-41)

The HC2 estimator uses a different weighing for each diagonal element ε2i .
Unlike HC1 which uses a constant weight, HC2 uses 1

1−hii
as the weight of

the ith diagonal element ε2i . hii is defined as the ith diagonal element of matrix

X
(
X′X

)−1 X′, or the hat matrix. This is shown in Equation 2-42.

HC2 = (
X′X

)−1 X′diag
(

ε2i

1 − hii

)
X
(
X′X

)−1

where hii is the ith diagonal element of X
(
X′X

)−1 X′
(2-42)

HC3 modifies HC2 by using 1
(1−hii )

2 as the weight for each diagonal element

ε2i . Davidson and MacKinnon [2] showed that this variance estimator has less bias
than HC2. The HC4 estimator – proposed by Cribari-Neto [3] – uses 1

(1−hii )
δi
as the

weight, where δi = min(4, M
N+1hii).

2.6.2 HAC Consistent Standard Errors

If residuals from OLS have autocorrelation in addition to heteroskedasticity, the
parameter estimates are still unbiased and consistent because the first Gauss-Markov
condition holds. However, because the last two Gauss-Markov assumptions are
violated, the OLS estimator no longer has the least variance and confidence intervals
obtained using Equation 2-10 are biased. Using the correction for heteroskedasticity
introduced in Equation 2-41 or 2-42 is inadequate to cure the bias due to the presence
of autocorrelation in residuals.

Newey and West [4] proposed a correction to variance estimation in order to
account for heteroskedasticity and autocorrelation. Their estimator, known as the
Newey-West estimator, depends on a parameter L specifying the number of auto-
correlation lags to consider. The Newey-West estimator is shown in Equation 2-43,
where xi denotes the ith row of design matrix X written as a column vector.



2.7 Regularization 25

The expression in Equation 2-43 gives a matrix with a diagonal element and L

subdiagonal entries. Setting L = 0 gives the heteroskedasticity consistent estimator,
HC1.

HAC = (
X′X

)−1 X′εε′X
(
X′X

)−1

X′εε′X = diag

(
1

M

M∑
i=1

ε2i xix′
i

)
+ 1

M

L∑
l=1

M∑
i=l+1

wlεiεi−l

(
xix′

i−l + xi−lx′
i

)

wl = 1 − l

L + 1
(2-43)

Equation 2-43 uses Bartlett kernel wl . There are other choices of kernels wl ,
giving different estimates of the covariance matrix that may yield lower bias for
small sample sizes. For example, Gallant [5] uses Parzen kernel.

2.7 Regularization

By increasing the number of parameters in a linear model, one can boost regression
R2 by improving the model fit over the training (or calibration) dataset. However,
this makes the model overfit the data, fitting the data outliers as though they
were aspects of the underlying data distribution. Because they are artifacts of
measurement errors, however, they are often not replicated in the test dataset. This
leads to a significant deterioration in the model fit on the test dataset. In order to
guard against overfitting in the training dataset, it is customary to use regularization.

Regularization involves adding a penalty term to the objective function that
penalizes models with higher number of parameters or models with higher value of
parameters. Adding the sum of model parameters’ absolute values, ‖βi‖, gives L1
or Lasso regularization. The objective function used in Lasso regression is shown in
Equation 2-44. Similarly, L2 or ridge regression involves using ‖βi‖2 as the penalty
function (Equation 2-45) and imposes greater penalty of higher parameter estimates
as compared with L1 regression.

min
β

1

N

N∑
i=1

⎛
⎝yi −

P∑
j=0

βjxj,i

⎞
⎠

2

+
P∑

j=0

∥∥βj

∥∥ (2-44)

min
β

1

N

N∑
i=1

⎛
⎝yi −

P∑
j=0

βjxj,i

⎞
⎠

2

+
P∑

j=0

∥∥βj

∥∥2 (2-45)
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Fig. 2-3. Lasso (L1) Regularization Setting Parameters to Zero

Equation 2-44 is able to set the parameters βj of insignificant exogenous
variables xj to zero, thereby obtaining a parsimonious model. This is in contrast
to L2 regularization that can only reduce the estimated parameter magnitude of
insignificant exogenous variables. To understand this property of Lasso regression,
let us look at the contours of the penalty term and OLS term (elliptical due to
quadratic objective), as shown in Figure 2-3. Because the L2 penalty term is a circle
(or sphere in higher dimensions), it cannot set parameter estimates to zero. In Lasso
(L1) regularization, however, the contours of the penalty term are lines, and the
optimum value of the combined objective function will lie on a corner that involves
setting some parameters to zero.

Elastic net or L1–L2 regularization involves a weighted combination of L1 and
L2 penalty terms.

2.8 Goodness of Fit

Goodness of fit metrics furnish a quantitative measure of how well a model fits the
data. There are a variety of goodness of fit metrics in use, some focused solely on
quantifying the model’s ability to produce output that matches the known output,
while others take the number of model parameters into account, in addition to
prediction accuracy. Furthermore, models fitted using maximum likelihood have a
different set of goodness of fit metrics. These are discussed below.
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2.8.1 Coefficient of Determination, R2

The most commonly used goodness of fit metric for a linear model is R2, or the
coefficient of determination. It is defined as shown in Equation 2-46. Its value lies
between zero and one, with values closer to one indicating better model fit to the
data. SSres can be regarded as the unexplained variance, and when it is zero, the
model fits the data perfectly, giving an R2 of one.

R2 = 1 − SSres

SStot

SStot =
M∑
i=1

(yi − ȳ)2

SSres =
M∑
i=1

ε2i

ȳ = 1

M

M∑
i=1

yi

(2-46)

2.8.2 Adjusted R2

Increasing the number of parameters will generally reduce the residual variance
which is proportional to SSres. This may lead to overfitting, giving higher bias in
testing data. In order to account for the number of model parameters, adjusted R2 is
calculated as shown in Equation 2-47, penalizing the models that achieve low SSres
by increasing the number of parameters.

R2
adj = 1 − M − 1

M − N − 1

SSres

SStot

= 1 −
(
1 − R2

) M − 1

M − N − 1
(2-47)

2.8.3 Pseudo R2

For models fitted using the maximum likelihood method, the corresponding measure
is pseudo R2. It is defined using the likelihood of an existing model, L(β), and
the likelihood of a hypothetical model that uses only an intercept, L(β0), using
Equation 2-48.

pseudo R2 = 1 −
(

L(β0)

L(β)

) 2
M

(2-48)
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2.8.4 Information Criterion

For models that use regularization, adjusted R2 does not adequately account the
benefit of adding penalty terms that reduce variance of forecast at the cost of
increasing bias. Also, R2 and adjusted R2 are not applicable to models fit using
log-likelihood. The information criterion handles both of these shortcomings by
accounting for the likelihood of observing data and penalizing models with higher
number of parameters. There are several flavors of information criterion in use:

1. Akaike Information Criterion: AIC is defined as shown in Equation 2-49,
where k denotes the number of free parameters and L(β) is the likelihood.
Smaller AIC values are better. In an OLS model, k is equal to P + 1, according
to the notation used earlier. β denotes the model’s free parameters.

AIC = 2k − 2 ln(L(β)) (2-49)

2. Bayesian Information Criterion: BIC is similar to AIC except with regard to
penalty terms, as shown in Equation 2-50. BIC uses k ln(M) where k is the
number of model parameters and N is the number of observations. This criterion
is also known as the Schwarz information criterion.

BIC = k ln(N) − 2 ln(L(β)) (2-50)

2.8.5 Wald Test

The Wald test is used to assess the statistical significance of estimated parameter
values. The statistic is defined in Equation 2-51. β̂ denotes the estimated parameter
value, and β0 denotes the hypothesized parameter value. The variance of the
estimated parameter, var(β̂), is computed by taking the second derivative of the
likelihood function.

W = β̂ − β0

var
(
β̂
) (2-51)

Under the null hypothesis, the estimated parameter value is statistically identical
to β0. Asymptotically, the Wald statistic follows a χ2 distribution with one degree
of freedom. Using a confidence threshold, one can compare the Wald statistic’s
value to the critical value assuming a χ2(1) distribution to accept or reject the null
hypothesis.

2.8.6 LM Test

The Lagrange multiplier, or LM, test is also known as the score test. Score is
defined as the derivative of the log-likelihood function, l(y,X, θ), with respect to
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Fig. 2-4. Log-Likelihood
Function and Its Maximum

the model’s parameters, θ , as denoted by Equation 2-52. In general, this is a vector
because θ is a vector of model parameters.

s(θ) = ∂l(y,X, θ)

∂θ
(2-52)

A typical log-likelihood function may look as shown in Figure 2-4. Maximum
likelihood attempts to find θ0 at which l(y,X, θ) attains maximum. This is obtained
by setting the first derivative to zero, as shown in Equation 2-53.

∂l(y,X, θ)

∂θ
= 0 (2-53)

Expanding the log-likelihood function in the neighborhood of maxima, θ0, using
Taylor expansion, one obtains Equation 2-54. (θ − θ0)

2 is the variance of parameter
estimate θ0.

l(y,X, θ) = l(y,X, θ0) + ∂l(y,X, θ)

∂θ0
(θ − θ0) + 1

2

∂2l(y,X, θ)

∂θ0∂θ0
(θ − θ0)

2 +

O((θ − θ0)
3)

= l(y,X, θ0) + 1

2

∂2l(y,X, θ)

∂θ0∂θ0
var (θ0)

∴ var (θ0) = 2

(
∂2l(y,X, θ)

∂θ0∂θ0

)−1

(l(y,X, θ) − l(y,X, θ0))

(2-54)

Intuitively, the high variance of θ0 implies a lower value of the second derivative,
i.e., a rounded and diffuse log-likelihood function near its maximum. Conversely, a
higher value of the second derivative of the log-likelihood function translates to a
lower variance and a sharply pointed log-likelihood curve near θ0.

Lagrange multiplier (LM) computes the metric shown in Equation 2-55 and
compares it against a χ2 distribution, where l(y, θ) denotes the log-likelihood
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function.

LM =
(

∂l(y,X, θ)

∂θ

)′ (
∂2l(y, θ)

∂θ∂θ

)(
∂l(y, θ)

∂θ

)
∼ χ2(N) (2-55)

The LM test can be used to validate the statistical significance of a randomly
chosen θ vector to be the maximum of the log-likelihood function. Under the
null hypothesis, the choice of a random θ gives a statistically similar value
of log-likelihood as the true maxima, θ0. Therefore, under the null hypothesis,

the expression in Equation 2-55 is equivalent to s(θ)2

var(θ)
which follows a χ2(N)

distribution with N degrees of freedom, where P + 1 denotes the number of free
parameters in θ , including the constant (intercept).

2.9 Diagnostic Measures

1. Durbin-Watson metric: This metric tests if the residuals are correlated. It only
tests for one-lag autocorrelation. If the model exhibits autocorrelation at two
or higher lags, the Durbin-Watson test will not detect it. For that purpose,
the Ljung-Box or Box-Pierce test should be used. The Durbin-Watson test
calculates the metric shown in Equation 2-56. The metric d is approximately
equal to 2(1 − ρ). Assuming the null hypothesis is true, ρ = 0, and the metric
should be close to two. The test statistic is compared against a table of values,
and the null hypothesis is accepted or rejected subject to a confidence level.

d =
∑M

i=2

(
ε̂i − ε̂i−1

)2
∑M

i=1 ε̂2i

ε̂i = yi − ŷi

(2-56)

The asymptotic limit of the Durbin-Watson statistic, 2(1 − ρ), is derived in
Equation 2-57. In deriving this limit, the number of observations, M , goes to
infinity.

d =
∑M

i=2

(
ε̂i − ε̂i−1

)2
∑M

i=1 ε̂2i

=
∑M

i=2 ε̂2i + ε̂2i−1 − 2ε̂i ε̂i−1∑M
i=1 ε̂2i

= 1 +
∑M

i=2 ε̂2i−1∑M
i=1 ε̂2i

− 2ρ

∑M
i=2 ε̂2i−1∑M
i=1 ε̂2i

≈ 2(1 − ρ)

(2-57)
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2. Breusch-Pagan test: This is an LM test and involves a two-step regression
to compute the metric NR2, where N denotes the number of observations or
equations and R2 is the coefficient of determination of the second OLS. This
metric is compared against critical values of a χ2 distribution, as discussed
below:
(a) Perform the primary regression y = Xβ + ε and calculate the standardized

residuals, ε.
(b) Compute the variance of residuals and divide the residuals, ε, by the

variance. Let us denote the processed residuals having unit variance by ν.
(c) Perform the auxiliary regression ν = Xα + η, as shown in Equation 2-58. X

typically includes all the regressors of the original OLS. Calculate R2 of the
auxiliary regression.

νi = α0,i + α1,ix1,i + · · · + αN,ixN,i + ηi (2-58)

(d) The metric is defined as NR2, where N denotes the number of equations.
Under the null hypothesis of no autocorrelation, computed parameters α

= 0, except perhaps α0. The metric is compared against the critical value
of a χ2(N) distribution with N degrees of freedom using the specified
confidence level. If the metric is below the critical value, the null hypothesis
is rejected, showing the presence of autocorrelation.

3. White’s heteroskedasticity test: White’s test is used to detect the presence
of heteroskedasticity that can cause the OLS estimator to lose its efficiency,
though it retains its consistency. This is an LM test that calculates a metric and
compares it against a χ2 distribution. The test begins by calculating residuals,
ε̂i , from OLS. These residuals are then plugged into an auxiliary linear model
shown in Equation 2-59. The auxiliary regression includes a constant, all
regressors used in the original OLS, squares of regressors used in the original
OLS, and their cross products. The R2 metric is computed using residuals
from the auxiliary regression, and the test metric NR2 is calculated, as shown
in Equation 2-60, where N denotes the number of equations or observations.
Under the null hypothesis of homoskedasticity, ε̂i should be nearly independent
of the regressors and their coefficients should be close to zero. Therefore, NR2

should behave like a sum of P − 1 normally distributed independent random
variables with constant variance, i.e., a χ2 distribution with P − 1 degrees
of freedom where P denotes the number of free parameters in the auxiliary
regression Equation 2-59.

yi = β0,i + β1,ix1,i + · · · + βP,ixP,i + ε̂i Original OLS

ε̂i = δ0,i + δ1,ix1,i + · · · + δP,ixP,i + δP+1,ix
2
1,i + · · ·+

δ2P,ix
2
P,i + δ2P+1,ix1,ix2,i + · · · +

δ2P+P(P−1)/2,ixP−1,ixP,i + ν̂i Auxiliary OLS

(2-59)
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Metric = NR2 ∼ χ2(2P + P(P − 1)

2
+ 1)

R2 is calculated using auxiliary OLS

(2-60)

4. Box-Pierce test for correlation: Box-Pierce is a portmanteu test, which means
that it can detect the joint presence or absence of correlations up to a certain
lag. This is in contrast to the Durbin-Watson test that can only detect first-
order correlation. The test metric is shown in Equation 2-61 and uses h

autocorrelation lags. It computes statistical estimates of autocorrelations, ρ̂k ,
ranging from 1 to h lags, using Equation 2-62. Under the null hypothesis of no
autocorrelation, the metric is distributed as a χ2(h) distribution with h degrees
of freedom. This provides a statistical test to accept or reject the null hypothesis
based on the metric value.

QBP = N

h∑
i=1

ρ̂2
k (2-61)

ρ̂k =
∑N

i=k+1 ε̂i ˆεi−k

N − k

ε̂i = yi − ŷi

(2-62)

5. Ljung-Box test: The Ljung-Box test is functionally similar to the Box-Pierce
test but gives better small-sample and large-sample performance than the Box-
Pierce test. Due to this advantage, it’s almost universally preferred over the
Box-Pierce test for determining serial correlation in residuals up to a lag h.
The test metric is shown in Equation 2-63. Asymptotically, it is distributed as
a χ2(h) distribution with h degrees of freedom, where h denotes the maximum
autocorrelation lag to be tested.

QLB = N (N + 2)
h∑

k=1

ρ̂2
k

N − k
∼ χ2(h) (2-63)

6. F-statistic: The F-test is used to jointly test the statistical significance of all
parameters in an OLS regression. The null hypothesis is that all parameters are
insignificant (i.e., 0). Rejection of the null hypothesis signifies that at least some
parameters of the OLD model are significant, and therefore, the OLS furnishes
a statistically significant relationship between y and X. The test metric is shown
in Equation 2-64. Under the null hypothesis of insignificant OLS parameters,
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the metric is distributed as an F-distribution with P and N − P − 1 degrees of
freedom. The F-distribution is the ratio of χ2 distributions.

F =
∑N

i=1 (yi − ȳ)2 −∑N
i=1

(
yi − ŷi

)2
∑N

i=1

(
yi − ŷi

)2 ∼ F (P,N − P − 1) (2-64)

7. Skew and kurtosis: Skew and kurtosis measure the degree of closeness of the
residual distribution with the normal distribution. While OLS estimation does
not assume a normal distribution of errors, in the absence of normality, there
could be non-linear parameter estimators that are more efficient than OLS,
notwithstanding the fact that OLS is BLUE. Assuming a normal distribution,
skew should be close to zero, and kurtosis should be close to three. Skew and
kurtosis are defined as the second and third moments of the residual distribution,
respectively, as shown in Equation 2-65.

S = 1

Nσ 3

N∑
i=1

(εi − ε̄)3

K = 1

Nσ 4

N∑
i=1

(εi − ε̄)4

where σ 2 =
∑N

i=1 (εi − ε̄)2

N

(2-65)

8. Jarque-Bera: The Jarque-Bera test is used to check the hypothesis that
residuals follow a normal distribution. It uses skewness and kurtosis of residuals
to compute the metric shown in Equation 2-66. Under the null hypothesis,
the Jarque-Bera statistic, JB, has a χ2(2) distribution with two degrees of
freedom. S and K refer to skewness and kurtosis, respectively, as defined in
Equation 2-65.

JB = N

6

(
S2 + 1

4
(K − 3)2

)
(2-66)

9. Condition number: This metric indicates how sensitive estimated parameters
are to small changes in matrix X′X. The condition number is estimated as the
ratio of the largest absolute eigenvalue of the matrix to the smallest absolute
eigenvalue. A large condition number indicates a near matrix collinearity, i.e.,
a column-rank deficiency in matrix X′X. This is a forewarning of conditioning
issues and possible linear dependence of some exogenous (independent) vari-
ables, X.

10. Non-parametric tests of normality: Non-parametric tests avoid specification
of parameter values of a hypothetical normal distribution and offer greater
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flexibility in testing whether two distributions are identical. Two non-parametric
tests are popular: Kolmogorov-Smirnov test and quantile-quantile plots.
Kolmogorov-Smirnov test: Abbreviated as KS test, it compares the CDF of
two distributions and constructs a metric, shown in Equation 2-67, to dis-
criminate between the two distributions. Under the null hypothesis of identical
distributions, the metric follows a KS distribution.

D = sup
x

(CDF1(x) − CDF2(x)) (2-67)

Quantile-quantile plot: The quantile-quantile plot is a graphical representation
of CDF of a distribution on the X-axis, plotted against the CDF of a hypothetical
normal distribution on the Y-axis. Under the null hypothesis that the distribution
is normal, the plot should fall on a line at a 45◦ angle.

11. Variance inflation factor: This metric quantifies the level of multicollinearity
present in explanatory variables. OLS assumes that exogenous or independent
variables, X, are linearly independent. Without linear independence, X′X will
be singular and cannot be inverted. To compute the variance inflation factor
for xj , it is regressed against other independent variables using OLS shown in
Equation 2-68.

xj = β0 + β1x1 + · · · + βj−1xj−1 + βj+1xj+1 + · · · + βpxp + ε (2-68)

The variance inflation factor is then defined using Equation 2-69, where R2
j

is computed from OLS in Equation 2-68. Values greater than ten indicate the
presence of multicollinearity.

VIFj = 1

1 − R2
j

(2-69)

12. Cook’s distance: This metric is used to quantify the importance of a data point
in OLS regression. Functionally, it is similar to the studentized residual obtained
after deleting a point in OLS, as described in a previous section. It is calculated
by excluding a point, i, from regression and obtaining the fitted response values
for each point, ŷj,(i). This value is subtracted from the fitted response value
obtained using all data points in an OLS, ŷj . Finally, the metric is computed
using Equation 2-70.

Di =
∑N

j=1

(
ŷj − ŷj,(i)

)2
Pσ 2

σ 2 = 1

N − P − 1

N∑
k=1

(
yk − ŷk

)2
(2-70)
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In practice, one does not run the auxiliary regression with i point excluded.
Instead, one uses the analytical formula shown in Equation 2-71 that uses
leverage values, hi,i , computed using the hat matrix.

Di =
(
yi − ŷi

)2
Pσ 2

hi,i(
1 − hi,i

)2 (2-71)

Values greater than one are usually regarded as influential points.

2.10 Cointegration and Error CorrectionModel

Generally, OLS requires the exogenous or independent variables to be I(0), i.e.,
weakly stationary series. This is because of the first two Gauss-Markov assumptions
that imply that residuals are weakly stationary with zero mean and a constant, finite
variance. This requirement generally means that exogenous variables must typically
be weakly stationary, or I(0), as well. I(0) refers to integrated series of order zero,
which means that the series has constant mean and variance. In contrast, an I(1)
process does not have a constant mean because it has a trend. Differencing it, xt −
xt−1, yields an I(0) or weakly stationary process.

2.10.1 Spurious Regression

If we regress I(1) variables using OLS, the regression will yield parameter estimates
with high t-statistics and low p-values, indicating a highly significant relationship.
R2 will be moderate to high, adding to the false sense of significant relationship.
The Durbin-Watson statistic, however, will indicate the presence of serial autocor-
relation. In spite of t-statistics and F-statistic showing the presence of statistically
significant relationship, the regression is spurious.

To illustrate this phenomenon, let us consider two I(1) variables, yt and xt , as
defined in Equation 2-72.

yt = yt−1 + ε1,t

xt = xt−1 + ε2,t

εj,t ∼ N(0, 1) for j = 1, 2

(2-72)

The variables are plotted in Figure 2-5. OLS yields a high R2 of 0.998
(Listing 2-3), with estimated coefficients appearing highly significant. The Durbin-
Watson statistic, however, is 0.043, indicating the presence of serial autocorrelation.
This also reveals that the overly optimistic t-statistics and confidence intervals for
parameter estimates may be biased.
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Fig. 2-5. Spurious Regression Between Two I(1) Variables

Listing 2-3. OLS Results for Spurious Regression

1

2 OLS Regression Results
3 ================================================
4 Dep. Variable : y
5 R−squared: 0.998
6 Adj. R−squared: 0.998
7 F− statistic : 1.457e+05
8 Prob (F− statistic ) : 0.00
9 Log−Likelihood: −654.40

10 No. Observations : 300
11 AIC: 1313.
12 Df Residuals : 298
13 BIC: 1320.
14 Df Model: 1
15 Covariance Type: nonrobust
16 ========================================================
17 coef std err t P>| t | [0.025 0.975]
18 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 const −2.0394 0.250 −8.151 0.000 −2.532 −1.547
20 x1 1.1296 0.003 381.725 0.000 1.124 1.135
21 =======================================================
22 Omnibus: 16.174
23 Durbin−Watson: 0.043
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24 Prob(Omnibus): 0.000
25 Jarque−Bera (JB): 15.534
26 Skew: −0.504
27 Prob(JB): 0.000424
28 Kurtosis : 2.526
29 Cond. No. 170.
30 =======================================================
31

32 Notes:
33 [1] Standard Errors assume that the covariance matrix of the errors is correctly

specified .

Regressing the first difference of y against the first difference of x reveals the
true relationship, with the estimated parameters becoming insignificant. This should
have been expected because after taking the first difference, we are regressing two
stationary I(0) time series that are independent and, therefore, have no relationship
to one another. Results in Listing 2-4 illustrate this fact. R2 is close to zero, the
F-statistic fails to reject the null hypothesis if no significant relationship between
the dependent and independent variables, and the p-value for parameter estimate is
insignificant.

Listing 2-4. OLS Results After Taking First Difference

1 OLS Regression Results
2 ====================================================
3 R−squared: 0.000
4 Adj. R−squared: −0.003
5 F− statistic : 0.1397
6 Prob (F− statistic ) : 0.709
7 Log−Likelihood: −42.085
8 No. Observations : 299
9 AIC: 88.17

10 Df Residuals : 297
11 BIC: 95.57
12 Df Model: 1
13 Covariance Type: nonrobust
14 ===========================================================
15 coef std err t P>| t | [0.025 0.975]
16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 const 0.5493 0.030 18.109 0.000 0.490 0.609
18 x1 −0.0199 0.053 −0.374 0.709 −0.125 0.085
19 ===========================================================
20 Omnibus: 96.288
21 Durbin−Watson: 1.959
22 Prob(Omnibus): 0.000
23 Jarque−Bera (JB): 16.435
24 Skew: −0.151
25 Prob(JB): 0.000270
26 Kurtosis : 1.892
27 Cond. No. 4.12
28 ========================================================
29
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30 Notes:
31 [1] Standard Errors assume that the covariance matrix of the errors is correctly

specified .

2.10.2 ADF Test

The last section on spurious regression highlights the importance of ensuring the
variables used in regression are I(0), i.e., weakly stationary. An augmented Dickey-
Fuller test can be used to establish that a series is I(0) or, equivalently, is not I(1) and
does not have a unit root. The test regresses the first difference, �yt on a constant,
α, a trend term, βt , lagged value of the variable, yt−1, and lagged first differences
up to lag p, as shown in Equation 2-73.

�yt = α + βt + γyt−1 + δ1�yt−1 + δ2�yt−2 + · · · + δp�yt−p + εt (2-73)

Under the null hypothesis of unit root presence, γ ≈ 0. The ADF test calculates
the metric γ

σγ
, where σγ denotes the standard error of parameter γ . OLS estimation

yields estimates of both γ and σγ . Under the null hypothesis, the computed metric
follows a Dicker-Fuller distribution. Rejection of the null hypothesis is regarded as
proof that series yt is I(0), i.e., does not have a unit root.

2.10.3 Cointegration

The only exception to the requirement for variables in OLS to be I(0) variables
occurs when there is a cointegrating relationship present among the variables. This
is defined as the existence of a vector β that makes y−Xβ ∼ I (0) become a weakly
stationary series with no unit root, as shown in Equation 2-74. The vector [1,β]
is called the cointegration vector. When cointegration is present, OLS estimates
are super-consistent and all parameter estimates and confidence intervals are valid.
Cointegrating vector is unique only up to a multiplicative constant.

y − Xβ ∼ I (0)

y, X ∼ I (1)
(2-74)
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2.10.4 Error CorrectionModel

Every cointegration relationship implies the existence of an error correction model.
Viewing cointegration relation as a long-run equation, deviations from the long-run
equation must give rise to correction terms that drive the variables in a direction
toward the restoration of a long-run relationship. This is known as the error
correction model.

Let us assume yt and xt are I(1) variables with yt − βxt ∼ I (0) as the
cointegration equation. If yt − βxt begins increasing at a time instant, the following
time instant yt+1 should be pulled toward βxt+1 for the cointegration equation to
hold over the long term. This leads to the formulation of an error correction model,
as shown in Equation 2-75.

�yt = α1 + β1 (yt−1 − βxt−1) +
p∑

k=1

γ1,k�yt−k +
p∑

k=1

γ2,k�xt−k + ε1,t

�xt = α2 + β2 (yt−1 − βxt−1) +
p∑

k=1

γ3,k�yt−k +
p∑

k=1

γ4,k�xt−k + ε2,t

(2-75)

In order to estimate the error correction model, one must first estimate the
cointegration vector, β. This is done by running an OLS on yt = α + xβ + ε.
With the estimate of β in hand, equations comprising the error correction model in
Equation 2-75 are estimated, once again using OLS.

2.11 Instrumental Variables

First Gauss-Markov assumption assumes that errors are uncorrelated with exoge-
nous (independent) variables. If this assumption is violated, OLS estimates will be
biased and inconsistent. Instrumental variables help remediate the problem when
error terms are correlated with one or more independent variables, x. To see why the
presence of correlation between error terms and independent variables causes OLS
to be biased and inconsistent, let us consider a two-variable OLS, y = α + βx + ε.
OLS minimizes (y − α − βx)2 with respect to parameters α and β. Differentiating
with respect to β yields x(y − α − βx) = 0, i.e., xε = 0. This shows that OLS
tries to select residuals that are orthogonal to independent variable x. The computed
value of parameter β, denoted as β̂, is computed as shown in Equation 2-76. As
seen from Equation 2-76, computed parameter estimate β̂ does not converge to
the true parameter value β, causing OLS to be biased and inconsistent because
cov(x, ε) �= 0.
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β̂ = cov(y, x)

var(x)

= cov(α + βx + ε, x)

var(x)

= cov(α + βx, x)

var(x)
+ cov(ε, x)

var(x)

= β + cov(ε, x)

var(x)

(2-76)

In practice, correlation between independent variables and error terms could
arise because of a missing variable in the OLS equation that is correlated with an
exogenous variable, x. A missing variable causes the residual to absorb the values
of that variable, creating correlation between the exogenous variable and residual.

Instrumental variables, or IVs, involve selecting another input variable, z, that is
correlated with the input variable x but is uncorrelated with the error term, ε. This
is followed by a two-step regression procedure, as described below:

1. Regress the instrumental variable, z, on the original regressors, x, as shown in
Equation 2-77.

X = Zδ + u

Z is correlated with X and uncorrelated with u

∴ δ = (
Z′Z

)−1 Z′X

∴ X̂ = Z
(
Z′Z

)−1 Z′X

= PzX

(2-77)

In Equation 2-77, Pz is the orthogonal projector for Z. We obtain a projection of
exogenous variables, X̂, on subspace spanned by Z.

2. Regress the original dependent variable, y, on X̂ obtained from step 1, as shown
in Equation 2-78, to obtain unbiased and consistent parameter estimates of β.

y = X̂β + ε

β =
(

X̂′X̂
)−1

X̂′y

= (
X′P′

zPzX
)−1 X′Pzy

= (
X′PzX

)−1 X′Pzy

because Pz is idempotent

(2-78)
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A generalized linear model, or GLM, extends the linear model to cover certain
non-linear modeling tasks. The extension of the linear model is necessitated by the
following functional requirements:

1. Model output could be range bound. For example, a model that predicts the
classification of a data point into a class is going to produce a label belonging
to a discrete set of classes. Similarly, a model that predicts the probability of an
event for an observation will produce an output that lies between zero and one.
A linear model, on the other hand, has a default range from −∞ to ∞.

2. There could be a non-linear relationship between model output and exogenous
(independent) variables. A linear model formulates the model output as a dot
product of exogenous variables with a parameter vector. One could retain the
linear product between the parameter vector and exogenous variables, but the
output could be a non-linear function of the dot product.

3. Error distribution of residuals is assumed to be independent and identically dis-
tributed (IID) and weakly stationary. In many applications, the error distribution
is assumed to be normal. Could this error distribution belong to a parametric
family of distributions? Certain modeling tasks seem naturally compatible with
certain distributions. For example, a model that predicts an event’s probability of
occurrence is likely to follow a binomial distribution, with the event occurring or
not occurring in a training dataset.
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A generalized linear model addresses the foregoing shortcomings of a linear
model by introducing the following enhancements:

1. A non-linear function, g, maps the output, y, to the linear part of the predictor,
denoted by η = Xβ. This is shown in Equation 3-1.

η = Xβ = β0 +
p∑

i=1

βixi

= g(E[y])
(3-1)

To compare and contrast, in a linear model, g was a unit function with E[y] =
Xβ or y = Xβ + ε. g is called the link function because it links the output to the
linear predictor, η.

2. Function g has a range spanning (−∞,∞) and domain specific to the problem.
For example, if the modeling task involves predicting a probability, the domain
of g would be [0, 1]. Similar to the linear model, parameters β only occur as a
linear combination with exogenous variables, X.

3. The probability distribution of output follows an exponential class of probability
distributions, as shown in Equation 3-2. Equation 3-2 gives the general form of
the exponential family of distributions.

f (y; θ) = h(y) exp (η(θ)T (y) − A(θ)) (3-2)

In Equation 3-2, T (y) is called sufficient statistic because it represents how
data impacts the distribution through model parameters, θ . η(θ) is called the
natural parameter. A(θ) is referred to as the log-partition function because
it represents a normalization constant that ensures that the probability density
function adds to 1, i.e.,

∫
f (y; θ)dy = 1. h(y) is known as the tilting

parameter. The natural form of the exponential family of distributions is
obtained from the general form by setting η(θ) = θ and T (y) = y, as illustrated
in Equation 3-3. An additional dispersion parameter is introduced in natural
form.

f (y; θ, φ) = exp

(
yθ − b(θ)

a(φ)
+ c(y, φ)

)
(3-3)

The exponential class of distributions is fairly generic. It includes Gaussian,
Poisson, binomial, gamma, and inverse gamma distributions, as shown in a
subsequent section. The product of model parameters and exogenous (indepen-
dent) variables is represented by θ . a(φ) is a scale function that determines
the variance. c(y, φ) is a normalizing constant that ensures the integral of the
probability distribution function over θ sums to 1. Hence, it is a function of y

and φ.
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3.1 Score Equations

Score equations are applicable to a log-likelihood function and furnish a generic
method for calculating the mean and variance of parameter estimates. There are
two score equations, as described below. Let l(θ, φ; y) denote the log-likelihood
function corresponding to the likelihood function f (y; θ, φ) as shown in Equa-
tion 3-4. θ denotes a vector of model parameters related to mean, while φ denotes
model parameters related to scale or variance. In a GLM, only model parameters
denoted by θ are calibrated to fit the data. φ is specified by the specific probability
distribution function.

l(θ, φ; y) = log f (y; θ, φ) (3-4)

1. Maximum likelihood involves finding a maxima of the log-likelihood function
with respect to model parameters, θ , as shown in Equation 3-5.

E

[
∂l(θ, φ; y)

∂θ

]
= 0 (3-5)

For the exponential family of probability distributions, we have the log-
likelihood function as yθ−b(θ)

a(φ)
+ c(y, φ). Applying Equation 3-5 gives

Equation 3-6.

E[y] = db(θ)

dθ
= b′(θ) (3-6)

2. The variance of the log-likelihood function can be related to the second deriva-
tive. Because we are finding a maxima for the log-likelihood function, its second
derivative should be negative. This gives Equation 3-7.

E

[
∂2l(θ, φ; y)

∂θ2

]
+ E

[(
∂l(θ, φ; y)

∂θ

)2
]

= 0 (3-7)

Applying Equation 3-7 to the exponential family of probability distributions, we
get Equation 3-8. Equation 3-8 uses the result from Equation 3-6 to derive an
expression for the variance of y.

E

[(
y − b′(θ)

a(φ)

)2
]

+ E

[
−b′′(θ)

a(φ)

]
= 0

E
[
(y − E[y])2

]
= b′′(θ)a(φ)

∴ var(y) = b′′(θ)a(φ)

(3-8)
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The expression for the mean and variance of y shown in Equation 3-8 can be
derived using the probability density function. Recall that the probability density
function integrates to 1 over y as shown in Equation 3-9.

∫ ∞

−∞
exp

(
yθ − b(θ)

a(φ)
+ c(y, φ)

)
dy = 1

∴ exp
b(θ)

a(φ)
=

∫ ∞

−∞
exp

(
yθ

a(φ)
+ c(y, φ)

)
dy

(3-9)

Differentiating Equation 3-9 with respect to θ , we get the expression for the
mean of y, as shown in Equation 3-10.

exp

(
b(θ)

a(φ)

)
b′(θ)

a(φ)
=

∫ ∞

−∞
y

a(φ)
exp

(
yθ

a(φ)
+ c(y, φ)

)
dy

∴ b′(θ)

a(φ)
=

∫ ∞

−∞
y

a(φ)
exp

(
yθ − b(θ)

a(φ)
+ c(y, φ)

)
dy

∴ b′(θ) = E [y]

(3-10)

Differentiating Equation 3-9 a second time with respect to θ , we get the
expression for the variance of y, as shown in Equation 3-11. We have used the
fact that b′(θ) = E [y] in deriving Equation 3-11.

exp

(
b(θ)

a(φ)

) ((
b′(θ)

a(φ)

)2

+ b′′(θ)

a(φ)

)
=

∫ ∞

−∞
y2

a(φ)2
exp

(
yθ

a(φ)
+ c(y, φ)

)
dy

∴ b′′(θ)

a(φ)
=

∫ ∞

−∞
y2 − (E[y])2

a(φ)2
exp

(
yθ − b(θ)

a(φ)
+ c(y, φ)

)
dy

∴ b′′(θ)a(φ) = E
[
y2 − (E[y])2

]
= var(y)

(3-11)

3.2 Exponential Family of Probability Distributions

The exponential family of probability distributions constitutes a parametric family
defined by Equation 3-3. Normal, Poisson, binomial, gamma, and inverse gamma
probability distributions belong to this parametric family. It is instructive to write the
probability distribution function of each of these distributions and compare it with
the canonical form shown in Equation 3-3. Doing so allows us to immediately apply
Equations 3-6 and 3-8 to derive expressions for the expected value and variance of
model output y.

The canonical link function is obtained by setting η = Xβ = b
′
(θ).



3.2 Exponential Family of Probability Distributions 45

Table 3-1. Commonly Used GLM Models

Data Range of Canonical Canonical Link

Distribution Output Link Name g(μ) = Xβ

Normal R ∈ (−∞,∞) identity μ = Xβ

Poisson Integers ∈ (0, 1, · · · ,∞) log logμ = Xβ

Gamma R ∈ (0, · · · ,∞) negative inverse − 1
μ

= Xβ

Inverse gamma R ∈ (0, · · · ,∞) inverse square 1
μ2 = Xβ

Binomial Integers ∈ (0, · · · , N) logit − μ
N−μ

= Xβ

Bernoulli Integer ∈ (0, 1) logit − μ
1−μ

= Xβ

Multinomial Integer tuple (p1, · · · , pK) logit − μi

1−μi
= Xβi

with
∑K

i=1 pi = 1
∑K

i=1 μi = 1

Integer pi 0 or 1

Normal CDF Integer ∈ (0, 1) normal CDF �−1(μ) = Xβ

(Probit) inverse

�(z) =∫ z

−∞
1√
2π

exp
(
− x2

2

)
dx

A concise table showing different kinds of generalized linear models with their
data distributions and canonical link functions is shown in Table 3-1.R denotes the
space of real numbers. log denotes natural logarithm.

3.2.1 Normal Distribution

A normal distribution’s probability density function can be written in the form of
an exponential distribution as shown in Equation 3-12. θ denotes the mean of the
distribution and σ 2 is its variance. Figure 3-1 shows the effect of changing σ for
θ = 0. Changing θ centers the distribution around a different mean.

f (yi; θi, φ) = 1√
2πσ 2

exp

(
− (yi − θi)

2

2σ 2

)
where θi = xiβi

l(θi, φ; yi) = −1

2
log 2πσ 2 − (yi − θi)

2

2σ 2

= −1

2
log 2πσ 2 − y2

i + θ2i − 2yiθi

2σ 2
(3-12)

= yiθi − θ2i
2

σ 2 − y2
i

2σ 2 − 1

2
log 2πσ 2
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Fig. 3-1. Normal Distribution Using Mean = 0

∴ b(θi) = θ2i

2

and a(φ) = σ 2

Applying Equations 3-6 and 3-8 to the normal distribution gives the expression
for the expected value and variance of y, as shown in Equation 3-13.

E[y] = b′(θ) = θ

var(y) = σ 2
(3-13)

The canonical link function for a normal distribution is the identity function.
Setting η = Xβ equal to θ = E[y], we see that E[y] = η, i.e., the identity link
function.

Application
In this example, let us predict the daily change in the yield of 10-year constant
maturity treasury bonds, �y10Yr . Let us use the daily change in the yield of 1-
month treasury bills (�y3Mo), the daily change in the yield of 30-year treasury bills
(�y30Yr ), and the daily return on S&P 500 (rm) as predictor variables (exogenous
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variables). The model is formulated in Equation 3-14.

�y10Yr (t) = α + β1�y1Mo(t) + β2�y30Yr (t) + β3rm(t) + εt

rm = PSP500(t) − PSP500(t − 1)

PSP500(t − 1)

(3-14)

Data from 2014 to 2024 is used for the purpose, with the first 90% of observations
used for training (i.e., fitting) the model and the remaining 10% used for testing.
Statistics related with model fitting are shown in Listing 3-1. As seen from the
statistics, the R2 of the model is 0.99. However, only the change in 30-year bond
yield is statistically significant with 95% confidence. The market return has a
negative correlation with the change in 10-year bond yield, as can be seen from the
negative coefficient, –0.54. This conforms with the general observation that when
equity markets rise, yields on long maturity bonds fall and vice versa.

Plots of residuals from the training dataset show that the error distribution is close
to normal, as seen in Figure 3-2.

In the test dataset, the error distribution of residuals is close to the normal
distribution as well, as can be seen from Figure 3-3. We can test the assumption of
normality of residuals more formally using the Kolmogorov-Smirnov test. As shown
in Listing 3-1, the KS test for test data yields a p-value of 0.1875. Therefore, the
null hypothesis of normality cannot be rejected at 95% confidence interval because
the p-value is greater than 0.05.

The code for fitting and testing the model is shown in Listing 3-2.

Listing 3-1. OLS Results for Spurious Regression

1

2 Generalized Linear Model Regression Results
3 ============================================================
4 Dep. Variable : y No. Observations : 2346
5 Model: GLM Df Residuals : 2342
6 Model Family: Gaussian Df Model: 3
7 Link Function: identity Scale : 0.00033633
8 Method: IRLS Log−Likelihood: 6054.2
9 Date: Sat , 10 Feb 2024 Deviance: 0.78768

10 Time: 11:00:43 Pearson chi2 : 0.788
11 No. Iterations : 3 Pseudo R−squ. (CS): 0.9976
12 Covariance Type: nonrobust
13 ============================================================
14 coef std err z P>|z | [0.025 0.975]
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 const 0.0004 0.000 1.041 0.298 −0.000 0.001
17 x1 0.0088 0.011 0.784 0.433 −0.013 0.031
18 x2 0.9473 0.008 115.201 0.000 0.931 0.963
19 x3 −0.0540 0.035 −1.549 0.121 −0.122 0.014
20 ============================================================
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Fig. 3-2. Residual Plots of GLM with Normal Distribution in Training Dataset

Fig. 3-3. Residual Plots of GLM with Normal Distribution in Test Dataset
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Listing 3-2. Normal Generalized Linear Model

1 import numpy as np
2 import pandas as pd
3 import statsmodels . api as sm
4 import matplotlib . pyplot as plt
5 import os
6 import logging
7 import scipy . stats as ss
8

9

10 DATADIR = r"C:\prog\cygwin\home\samit_000\latex\book_stats \code\data"
11 PLOTDIR = r"C:\prog\cygwin\home\samit_000\latex\book_stats \code\ plots "
12 logging . basicConfig ( level =logging.DEBUG)
13

14

15 class NormalGLM(object):
16 def __init__ ( self , endogName, exogNames, trainPerc=0.9):
17 filename = os . path . join (DATADIR, endogName + ".csv")
18 y = pd.read_csv(filename , parse_dates =["DATE"])
19 for xi in exogNames:
20 filename = os . path . join (DATADIR, xi + ".csv")
21 x = pd.read_csv(filename , parse_dates =["DATE"])
22 y = pd.merge(y, x, on=["DATE"], how="inner")
23

24 y. replace (" . " , np.nan, inplace=True)
25 for col in y.columns:
26 if col != "DATE":
27 y. loc [:, col ] = y. loc [:, col ]. astype (np. float64 )
28 y. ffill ( inplace=True)
29 self .endog = endogName
30 self .exog = exogNames
31 y = self . calculatePercChange (y)
32 self . df = y
33

34 self . testdata = int ( trainPerc ∗ self . df .shape [0]) − 1
35 self . logger = logging .getLogger( self . __class__ .__name__)
36 self .model = None
37

38 def calculatePercChange ( self , y) :
39 yval = y. loc [:, self .endog]. values
40 ygrowth = yval [1:] − yval[0:−1]
41 xgrowth = []
42 for x in self .exog:
43 xval = y. loc [:, x ]. values
44 if x == "SP500":
45 xgrowthi = xval [1:]/ xval[0:−1] − 1
46 else :
47 xgrowthi = xval [1:] − xval[0:−1]
48 xgrowth.append(xgrowthi)
49 datadict = {"DATE": y.DATE[1:], self .endog: ygrowth}
50 for i , x in enumerate( self .exog):
51 datadict [x] = xgrowth[i ]
52 return pd.DataFrame(datadict )
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53

54 def fit ( self ) :
55 y = self . df . loc [: self . testdata , self .endog]. values
56 X = self . df . loc [: self . testdata , self .exog]. values
57 X = sm.add_constant(X, has_constant="add")
58 glm = sm.GLM(y, X, family=sm.families.Gaussian( link=sm.families . links . identity

() ) )
59 glm = glm. fit ()
60 self . logger . info (glm.summary())
61 summaryfile = os . path . join (PLOTDIR, self.__class__ .__name__ + ". txt ")
62 with open(summaryfile, 'w') as fh :
63 fh . write (glm.summary().as_text () )
64 self .model = glm
65

66 def plotResid ( self ) :
67 fig , axs = plt . subplots (nrows=2, ncols=1)
68 resid = self .model. resid_response
69 meanval = resid .mean()
70 sd = resid . std ()
71 resid_std = ( resid − meanval)/sd
72 res = ss . kstest ( resid_std , ss .norm.cdf)
73 self . logger . info ( res )
74

75 xv = np. linspace ( resid .min() , resid .max(), 100)
76 yv = ss .norm.pdf(xv, meanval, sd)
77 dates = self . df . loc [0: self . testdata , "DATE"].values
78 axs [0]. plot ( dates , resid )
79 axs [0]. grid ()
80 axs [0]. set_title ("Residual Plot ")
81 axs [1]. hist ( resid , bins=40, density=True)
82 axs [1]. plot (xv, yv, lw=2)
83 axs [1]. grid ()
84 axs [1]. set_title ("Histogram of Residuals")
85 plt . tight_layout ()
86 plt . savefig (os . path . join (PLOTDIR, "trainResidNormal.jpeg"),
87 dpi=500)
88

89 def plotTestResults ( self , y, ypred) :
90 fig , axs = plt . subplots (nrows=3, ncols=1)
91 resid = y − ypred
92 meanval = resid .mean()
93 sd = resid . std ()
94 resid_std = ( resid − meanval)/sd
95 ksres = ss . kstest ( resid_std , ss .norm.cdf)
96 self . logger . info ( ksres )
97 xv = np. linspace ( resid .min() , resid .max(), num=100)
98 yv = ss .norm.pdf(xv, loc=meanval, scale=sd)
99 dates = self . df . loc [ self . testdata +1:, "DATE"].values

100 axs [0]. plot ( dates , resid )
101 axs [0]. plot ()
102 axs [0]. grid ()
103 axs [0]. set_title ("Residual Plot ")
104 axs [1]. hist ( resid , bins=40, density=True)
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105 axs [1]. plot (xv, yv, lw=2)
106 axs [1]. grid ()
107 axs [1]. set_title ("Histogram of Residuals")
108 axs [2]. plot ( dates , y, label ="y")
109 axs [2]. plot ( dates , ypred, "−.", label ="ypred")
110 axs [2]. grid ()
111 axs [2]. set_title (" Predicted vs . Actual")
112 plt . tight_layout ()
113 plt . savefig (os . path . join (PLOTDIR, "testResidNormal.jpeg"),
114 dpi=500)
115

116 def test ( self ) :
117 testdata = self . testdata + 1
118 y = self . df . loc [ testdata :, self .endog]. values
119 X = self . df . loc [ testdata :, self .exog]. values
120 X = sm.add_constant(X, has_constant="add")
121 ypred = self .model. predict (X)
122 self . plotTestResults (y, ypred)
123

124

125 if __name__ == "__main__":
126 normal = NormalGLM("DGS10", ["DGS1MO", "DGS30", "SP500"])
127 normal. fit ()
128 normal. plotResid ()
129 normal. test ()

Code Explanation
Salient features of the code are explained below. Let us step through the code in the
order of execution:

1. Inside the main section, the code creates an instance of classNormalGLM, pro-
viding an endogenous variable and a list of exogenous variables as arguments.

2. The endogenous variable is DGS10. This variable name represents a dataset
containing the daily closing yields on US government nominal bonds with ten-
year maturity. The data is obtained from the FRED database made available by
the Federal Reserve Bank of St. Louis at [6]. This is raw data; it is processed to
create the final endogenous variable.

3. Data for constructing exogenous variables is a list containing the following
datasets: DGS1MO, DGS30, and SP500. DGS1MO is the dataset containing
the daily closing yields on US government nominal bills with 1-month maturity.
DGS30 is the dataset containing the daily closing yields on US government
nominal bonds with 30-year maturity, and SP500 contains daily closing prices
for the S&P 500 index.

4. Inside the constructor of class NormalGLM, the code reads the comma-
separated files using the pandas library and joins the dataframes on date.

5. After some data cleanup such as performing a forward fill for unavailable values
represented as “.”, it calculates the daily growth rate of S&P 500.

6. For the endogenous variable, it calculates the daily change in yield.
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7. For rate-based exogenous variables (all exogenous variables except S&P 500
growth rate), it calculates the daily change in yield and uses the difference as
exogenous variables, as explained earlier.

8. It fits the GLM model using the GLM class from the statsmodels library and
calling the fit method on it. It uses the Gaussian family of link functions in
order to fit a normal GLM model. This family takes an argument specifying the
link function to use. The default link function for the Gaussian family is the
identity function. The code uses identity as the link function, provided as an
argument to the Gaussian family’s constructor. This argument is provided for
clarity; it is not required due to the fact that this is the default link function for
the Gaussian family.

9. It writes the summary statistics from the model fitting step.
10. Following this, it plots the residuals obtained on the training dataset and uses a

Kolmogorov-Smirnov test to check for the normality of residuals. The API is
available using the kstest method from the scipy library.

11. Following this, the code makes predictions on the test dataset, predicting the
change in yield on ten-year constant maturity government bonds, and plots the
results against observed values.

3.2.2 Poisson Distribution

The Poisson distribution is used to model the probability of observing a specified
number of event occurrences when there is a known average number of occurrences
per unit time. It is a discrete probability over the set of nonnegative integers which
represents the number of occurrences, as shown for a few examples in Figure 3-4.
For discrete probabilities, the equivalent of probability density is called probability
mass function. The probability mass function of the Poisson distribution is shown in
Equation 3-15, along with an illustration of why it belongs to the exponential family
of probability distributions.

f (y; θ, φ) = e−μμy

y! = exp (−μ + y logμ − log y!)

l(θ, φ; y) = y logμ − μ − log y!
∴ θ = logμ or exp(θ) = μ

b(θ) = exp(θ)

a(φ) = 1

E[y] = b′(θ) = exp(θ) = μ

var(y) = b′′(θ)a(φ) = exp(θ) = μ

(3-15)

Equation 3-15 shows that the mean and variance of the Poisson distribution are
both equal to μ. The canonical link function is obtained by setting η = θ = logμ =
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Fig. 3-4. Poisson Distribution

log(E[y]), i.e., a log link function. The range of the Poisson distributed variable is
[0,∞], and the logarithm function transforms the range to [−∞,∞].

Application
Let us estimate the delinquency rate on credit card debt in the United States
using the Poisson distribution. Credit card delinquency is a key econometric data
tracked by economists to gauge the financial health of consumers. Rising credit card
delinquencies point to weakening of the consumer’s ability to service credit card
debt, which could be a precursor to a decline in consumer spending and economic
growth. Because the delinquency rate cannot be negative, let us use the log link.
Furthermore, let us normalize the delinquency rate by weekly credit card debt and
revolving debt. This normalization is necessary because greater credit card debt
origination will increase the delinquency rate, everything else being the same.

First, let us select the explanatory variables. This choice is governed by data and
intuitive understanding of the drivers behind the response variable. Let us use the
following explanatory variables:

1. Quarterly GDP growth rate, GDP(t)−GDP(t−1)
GDP(t−1) .
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2. Change in the interest rate charged by banks on credit card debt relative to 2-year
(or 8-quarter) average, �INT(t).

3. Change in the PCE price index relative to prior 2-year average, �PCE(t).
Personal consumption expenditure (PCE) is the Federal Reserve’s preferred
metric to track inflation because it excludes volatile food and energy prices.

4. Change in real disposable income relative to prior 2-year average, �RDI(t).
5. Change in the interest rate on 30-year fixed-rate mortgage relative to 2-year

average, �30YrMort(t).
6. Indicator variable to flag years before the Great Financial Crisis (GFC) of 2009,

I (t). This variable is required because prior to GFC, lending standards were
relatively lax.

The model is formulated in Equation 3-16. All the explanatory variables must
be known prior to the prediction of the response variable for a period in order to
avoid in-sample bias. Credit card delinquency rate divided by weekly credit card
debt issuance μ(t) is the response variable and is available once each quarter (3
months) with one quarter lag. The interest rate charged by banks on credit card
debt is available quarterly. The PCE price index and real disposable income are
available monthly, while the 30-year mortgage rate is available weekly. Therefore,
in order to align the exogenous variables available at non-quarterly frequency with
ones available at quarterly interval, we calculate the average of monthly and weekly
variables within the relevant quarter. Nw and Nm denote the number of weekly and
monthly observations in a quarter in Equation 3-16.

log (μ(t)) = α + β1
GDP(t) − GDP(t − 1)

GDP(t − 1)
+ β2�INT(t) + β3�PCE(t)+

β4�RDI(t) + β5�30YrMort(t) + β6I (t) + εt

�INT(t) = INT(t) − INT (t)

INT (t) =
∑8

i=1 INT(t − i)

8
(3-16)

In order to verify that the endogenous variable follows the Poisson distribution,
we calculate the mean and standard deviation of credit card delinquency rate
normalized by debt issuance for the dataset. The mean is 0.018194 and the standard
deviation is 0.013455, and the two values are close enough to justify the assumption
of the Poisson distribution. The code for fitting the model and testing it on test data
is shown in Listing 3-3.
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Listing 3-3. Poisson Generalized Linear Model

1 import numpy as np
2 import pandas as pd
3 import statsmodels . api as sm
4 import matplotlib . pyplot as plt
5 import os
6 import logging
7 import scipy . stats as ss
8

9

10 DATADIR = r"C:\prog\cygwin\home\samit_000\latex\book_stats \code\data"
11 PLOTDIR = r"C:\prog\cygwin\home\samit_000\latex\book_stats \code\ plots "
12 logging . basicConfig ( level =logging.DEBUG)
13

14

15 class PoissonGLM(object):
16 def __init__ ( self , endogName, exogNames, trainPerc=0.9):
17 filename = os . path . join (DATADIR, endogName + ".csv")
18 y = pd.read_csv(filename , parse_dates =["DATE"])
19 y. loc [:, "year"] = y.DATE.dt.year
20 y. loc [:, "month"] = y.DATE.dt.month
21 y. loc [:, " quarter "] = (y.month.values − 1) // 3
22 self .convertColumnToFloat(y, endogName)
23 for xi in exogNames:
24 filename = os . path . join (DATADIR, xi + ".csv")
25 x = pd.read_csv(filename , parse_dates =["DATE"])
26 x. loc [:, "year"] = x.DATE.dt.year
27 x. loc [:, "month"] = x.DATE.dt.month
28 x. loc [:, " quarter "] = (x.month.values − 1) // 3
29 self .convertColumnToFloat(x, xi )
30 x = x[["year" , " quarter " , xi ]]. groupby(["year" , " quarter " ]) .mean().

reset_index (drop=False)
31 y = pd.merge(y, x, on=["year" , " quarter " ], how="inner")
32

33 y. replace (" . " , np.nan, inplace=True)
34 floatcols = set (exogNames + [endogName])
35 for col in y.columns:
36 if col in floatcols :
37 y. loc [:, col ] = y. loc [:, col ]. astype (np. float64 )
38 y. ffill ( inplace=True)
39 self .endog = endogName
40 self .exog = exogNames
41 y = self . calculateTransformedVars (y)
42 self . df = y
43

44 self . testdata = int ( trainPerc ∗ self . df .shape [0]) − 1
45 self . logger = logging .getLogger( self . __class__ .__name__)
46 self .model = None
47

48 def convertColumnToFloat(self , df , col ) :
49 df . loc [:, col ] = df . loc [:, col ]. replace (" . " , np.nan) . astype (np. float64 ) . ffill ()
50

51 def calculateDiffOverAvg ( self , df , col , lag , newcolname):
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52 vals = df . loc [:, col ]. values
53 avg = np.zeros ( vals .shape [0], dtype=np. float64 )
54 for i in range( lag ) :
55 avg[ i ] = vals [0: i +1].sum() / ( i+1)
56

57 sumv = vals [0: lag ]. sum()
58 for i in range( lag , vals .shape [0]) :
59 sumv += vals[ i ] − vals[ i−lag]
60 avg[ i ] = sumv/lag
61 df . loc [:, newcolname] = vals /avg − 1
62 return df
63

64 def calculateTransformedVars ( self , y) :
65 # convert credit card delinq rate to decimal
66 y. loc [:, self .endog] = y. loc [:, self .endog] / 100.0
67

68 # calculate GDP growth rate
69 y. sort_values (by=["year" , " quarter " ], inplace=True)
70 gdp = y. loc [:, "GDP"].values
71 growthRate = gdp[1:] / gdp[0:−1] − 1
72 y. loc [:, "GDPGrowthRate"] = 0.0
73 y. loc [1:, "GDPGrowthRate"] = growthRate
74

75 # convert TERMCBCCALLNS: CB interest rate on credit cards (monthly) to decimal
76 y. loc [:, "TERMCBCCALLNS"] = y.TERMCBCCALLNS / 100.0
77

78 # calculate int rate − trailing 8 quarter (2 year) average
79 y = self . calculateDiffOverAvg (y, "TERMCBCCALLNS", 8, "IntRateDiff")
80

81 # divide CCLACBW027SBOG: Loan on credit card and other revolving plans (weekly
) by 200

82 y. loc [:, "CCLACBW027SBOG"] = y.CCLACBW027SBOG / 200.0
83

84 # divide PCEPI: PCE price index (monthly) by 100
85 y. loc [:, "PCEPI"] = y.PCEPI / 100.0
86 y = self . calculateDiffOverAvg (y, "PCEPI", 8, " InflDiff ")
87

88 # divide DSPIC96: Real disposable income (monthly) by 2000
89 y. loc [:, "DSPIC96"] = y.DSPIC96 / 2000.0
90 y = self . calculateDiffOverAvg (y, "DSPIC96", 8, "RealDispIncDiff")
91

92 # convert MORTGAGE30US: 30 year mortgage rate (weekly) to decimal
93 y. loc [:, "MORTGAGE30US"] = y.MORTGAGE30US / 100.0
94 y = self . calculateDiffOverAvg (y, "MORTGAGE30US", 8, "Mort30Diff")
95

96 y. loc [:, "BeforeGFC"] = np.where(y.year < 2010 , 1, 0)
97

98 # divide y by normalized credit card outstanding loans
99 y. loc [:, self .endog] = y. loc [:, self .endog] / y. loc [:, "CCLACBW027SBOG"]

100

101 self .exog = ["GDPGrowthRate", "IntRateDiff", " InflDiff " , "RealDispIncDiff" , "
Mort30Diff",

102 "BeforeGFC"]
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103 return y
104

105 def fit ( self ) :
106 y = self . df . loc [8: self . testdata , self .endog]. values
107 X = self . df . loc [8: self . testdata , self .exog]. values
108 X = sm.add_constant(X, has_constant="add")
109 glm = sm.GLM(y, X, family=sm.families.Poisson( link=sm.families . links . log () ) )
110 glm = glm. fit ()
111 self . logger . info (glm.summary())
112 summaryfile = os . path . join (PLOTDIR, self.__class__ .__name__ + ". txt ")
113 with open(summaryfile, 'w') as fh :
114 fh . write (glm.summary().as_text () )
115 self .model = glm
116

117 def plotResid ( self ) :
118 fig , axs = plt . subplots (nrows=1, ncols=1, figsize =(10, 10))
119 yendog = self .model.model.endog
120 yhatv = self .model. predict ( self .model.model.exog)
121 resid = np.log(yendog
122 /yhatv)
123 self . logger . info ("mu = %f, sd = %f", self . df . loc [:, self .endog].mean(), self . df

. loc [:, self .endog]. std () )
124

125 dates = self . df . loc [8: self . testdata , "DATE"].values
126

127 axs . plot ( dates , resid )
128 axs . grid ()
129 axs . set_title ("Residual Plot ( Training Dataset )")
130 plt . tight_layout ()
131 plt . savefig (os . path . join (PLOTDIR, "trainResidPoisson.jpeg") ,
132 dpi=500)
133

134 def plotTestResults ( self , y, ypred) :
135 fig , axs = plt . subplots (nrows=2, ncols=1, figsize =(10, 10))
136 resid = np.log(y / ypred)
137

138 dates = self . df . loc [ self . testdata +1:, "DATE"].values
139 axs [0]. plot ( dates , resid )
140 axs [0]. plot ()
141 axs [0]. grid ()
142 axs [0]. set_title ("Residual Plot (Test Dataset )")
143 axs [1]. plot ( dates , y, label ="y")
144 axs [1]. plot ( dates , ypred, "−.", label ="ypred")
145 axs [1]. grid ()
146 axs [1]. legend ()
147 axs [1]. set_title (" Predicted vs . Actual")
148 plt . tight_layout ()
149 plt . savefig (os . path . join (PLOTDIR, "testResidPoisson.jpeg") ,
150 dpi=500)
151

152 def test ( self ) :
153 testdata = self . testdata + 1
154 y = self . df . loc [ testdata :, self .endog]. values
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155 X = self . df . loc [ testdata :, self .exog]. values
156 X = sm.add_constant(X, has_constant="add")
157 ypred = self .model. predict (X)
158 self . plotTestResults (y, ypred)
159

160

161 if __name__ == "__main__":
162 poisson = PoissonGLM("DRCCLACBS", ["TERMCBCCALLNS", "CCLACBW027SBOG

", "PCEPI", "GDP",
163 "DSPIC96", "MORTGAGE30US"])
164 # TERMCBCCALLNS: CB interest rate on credit cards (monthly) 100
165 # CCLACBW027SBOG: Loan on credit card and other revolving plans (weekly) 200
166 # PCEPI: PCE price index (monthly) 100
167 # DSPIC96: Real disposable income (monthly) 2000
168 # MORTGAGE30US: 30 year mortgage rate (weekly) 100
169

170 poisson . fit ()
171 poisson . plotResid ()
172 poisson . test ()

Code Explanation
A code walk-through is presented below following the execution sequence:

1. The code instantiates an object of class PoissonGLM. The constructor accepts
arguments for an endogenous variable and a list of exogenous variables. These
arguments point to datasets that are read and processed to create endogenous
and exogenous variables, respectively.

2. Training-testing data split is set at 0.9, which means 90% of the data is used for
training and the final 10% used for testing.

3. The endogenous variable is the delinquency rate on credit card loans for all
commercial banks in the United States. The dataset can be downloaded as part
of the FRED database using the symbol DRCCLACBS from [7].

4. Exogenous variables are constructed from data for the interest rate charged
by commercial banks on credit cards TERMCBCCALLNS, total outstand-
ing credit card debt CCLACBW027SBOG, PCE price index PCEPI, gross
domestic product GDP, real disposable income DSPIC96, and rate on 30-year
fixed-rate mortgageMORTGAGE30US. This data is available from the FRED
database: [8–12], and [13].

5. After reading the datasets in comma-separated format, the constructor of class
PoissonGLM converts the data to floating-point format.

6. After this, the datasets are joined. But before this can be done, year, month,
and quarter corresponding to each date are extracted. This is needed because
the data follow different reporting frequencies. Credit card delinquency rate is
quarterly, interest rate on credit cards is monthly, total outstanding credit card
debt is weekly, PCE index data is monthly, GDP is quarterly, real disposable
income is monthly, and 30-year fixed-rate mortgage rate is weekly.
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7. Data is converted to quarterly by appropriate transformations and joined in the
constructor, __init__.

8. Transformations are applied inside the method calculateTransformedVars to
get the final endogenous and exogenous variables.

9. Credit card delinquency rate is converted into a decimal from a percentage,
GDP growth rate is computed, and interest rate on credit cards is converted to a
decimal.

10. The interest rate charged on credit card debt is transformed inside the method
calculateDiffOverAvg. This method computes a trailing 2-year (or 8-quarter)
average and calculates the growth rate relative to this moving average as v(t)

v̄(t)
−1.

11. Data on credit card debt is normalized by dividing with 200. This is because the
series begins at around 200 value. This variable is not used by itself. It is used
to normalize the endogenous variable – delinquency rate on credit card debt. As
explained earlier, this normalization is required to take into account changing
amount of credit card debt. This is because the calculation of delinquency rate
does not take the total outstanding credit card debt into account.

12. The PCE price index is transformed using method calculateDiffOverAvg
which calculates the growth rate of the PCE index relative to a trailing 2-year
average.

13. The real disposable income and 30-year fixed-rate mortgage rate are also
transformed using the method calculateDiffOverAvg.

14. Indicator variable BeforeGFC is computed indicating if the date occurred
before the Great Financial Crisis.

15. Finally, the data is fitted using the GLM class of the statsmodels library. The
constructor is passed endogenous and exogenous variables, in addition to the
family of models to use: Poisson. It is provided a log link. Before passing
the exogenous variables, a constant is added to include the intercept term in
regression.

16. Statistics for fitting the model are reported.
17. A residual plot for training data is produced.
18. The model is used to predict credit card default rates on the test dataset, and the

results are plotted.

The plot of residuals observed on the training dataset is shown in Figure 3-5. It
can be seen from the plot that there is a spike in residual during the year 2010. This
is because the indicator variable I (t) changes value in January 2010. Aside from
dates around 2010, training residual is around 0.

The residual plot observed on the test dataset is shown in Figure 3-6. It also
plots predicted vs. actual delinquencies. One can observe that prediction accu-
racy improves markedly after October 2023. Before that, the model overpredicts
delinquency rate. This is perhaps due to the fact that most economists and market
participants viewed a mild recession as a likely event in the midst of the Federal
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Fig. 3-5. Fitting Poisson GLM on Training Dataset

Reserve’s sustained monetary tightening to curb inflation. These views are reflected
in the macroeconomic variables used in the model. Toward the end of 2010, Federal
Reserve officials began indicating their willingness to hold or even cut interest rates
in the wake of easing inflation pressures. As economic conditions reverted to the
ones observed in majority of the training data, prediction accuracy improved. This
is an important feature of most statistical models – one must pay careful attention to
whether test data is similar to training data. If it is significantly different, prediction
accuracy will suffer. There are a few alternatives to dealing with this scenario, such
as resorting to regime switching models or using a more representative training
dataset. Regime switching models are discussed in a later chapter.
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Fig. 3-6. Evaluating Poisson GLM on Test Dataset

3.2.3 Binomial Distribution

The binomial distribution is used to model variables that belong to one of two
classes, for example, if a company will default on its debt or not in the next year
or if a coin toss will yield heads or tails. Figure 3-7 shows the number of positive
outcomes for a few examples of Binomial distribution with different mean values.
The model output is a probability of belonging to one class, for example, probability
that a company will default or a coin toss will give heads. Since the range of model
output is [0, 1], the link function must transform the range [−∞,∞] to [0, 1]. This
can be seen by writing its probability mass function and comparing it with the
exponential family, as shown in Equation 3-17.
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f (y; θ, φ) =
(

N

y

)
py (1 − p)N−y

= exp (y logp + (N − y) log(1 − p) + logN !−
log(N − y)! − log y!)

l(θ, φ; y) = y log
p

1 − p
+ N log(1 − p) + logN !−

log(N − y)! − log y!

∴ θ = log
p

1 − p
or p = 1

1 + e−θ

a(φ) = 1

b(θ) = −N log(1 − p) = N log
(
1 + eθ

)

∴ E[y] = b′(θ) = N
1

1 + e−θ
= Np

var(y) = b′′(θ)a(φ) = N
e−θ

(
1 + e−θ

)2

= N
1

1 + e−θ

e−θ

1 + e−θ
= Np (1 − p)

(3-17)

Equation 3-17 shows that the mean and variance of the binomial distribution is
Np and Np (1 − p), respectively. The canonical link function is obtained by setting
η = θ = log p

1−p
= logit. The model output is the probability or p. Therefore,

log y
1−y

= η = Xβ implies that y = 1
1+exp−Xβ

.
The Bernoulli distribution is a special case of binomial distribution with N = 1,

i.e., an experiment with one trial. GLM with the Bernoulli distribution and logit link
function is also known as logistic regression.

Application
Let us use the binomial distribution to predict whether weekly market return
the following week (i.e., over the next five trading days) is positive or not. The
endogenous variable is the probability of observing a positive weekly market return,

denoted by P(t) and defined as prob
(

P(t+6)−P(t+1)
P (t+1) > 0

)
. Let us use the following

explanatory variables:

1. Indicator variable Ir (t) that is 1 if the weekly return observed over the last week
is greater than 2%, and 0 otherwise

2. Indicator variable IMA(t) that is 1 if the three-day moving average of closing
price is greater than the ten-day moving average, and 0 otherwise
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Fig. 3-7. Binomial Distribution

3. Indicator variable Ivol(t) that is 1 if the one-month volatility is greater than one-
year volatility, and 0 otherwise

4. Percentage change in the yield of one-month US government bill observed over
the last one week, δ(t) = Y1Mo(t−1)−Y1Mo(t−6)

Y1Mo(t−6)

Being a prediction of market variable, we do not expect the fit to be very good
because of the efficient market hypothesis. Market participants discount all available
information, including forecasts from known macroeconomic variables, to assign
market price. Therefore, any change in price from the opening price is due to
unforeseen events – or random noise. Although the efficient market hypothesis is
not true for prices of all securities and at all times, market tracking indices like S&P
500 generally follow this principle to a good extent.

Another shortcoming of the modeling methodology applied here is the constraint
inherent in the GLM framework. The explanatory variables are combined with each
other in a linear relationship, and this approach precludes non-linear interaction
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among the variables. There is also the possibility of not having included all requisite
explanatory variables in the model. The model, as described above, is formulated in
Equation 3-18 and the code is shown in Listing 3-4.

P(t) = 1

1 + exp−Z(t)
+ ε(t)

Z(t) = α + β1Ir (t) + β2IMA(t) + β3Ivol + β4δ(t)

δ(t) = Y1Mo(t − 1) − Y1Mo(t − 6)

Y1Mo(t − 6)

(3-18)

Listing 3-4. Binomial Generalized Linear Model

1 import numpy as np
2 import pandas as pd
3 import statsmodels . api as sm
4 import matplotlib . pyplot as plt
5 import os
6 import logging
7 import scipy . stats as ss
8

9

10 DATADIR = r"C:\prog\cygwin\home\samit_000\latex\book_stats \code\data"
11 PLOTDIR = r"C:\prog\cygwin\home\samit_000\latex\book_stats \code\ plots "
12 logging . basicConfig ( level =logging.DEBUG)
13

14

15 class BinomialGLM(object):
16 PERIOD = 5
17

18 def __init__ ( self , security , rates , trainPerc =0.9) :
19 filename = os . path . join (DATADIR, security + " .csv")
20 y = pd.read_csv(filename , parse_dates =["DATE"])
21 self .convertColumnToFloat(y, security )
22 for xi in rates :
23 filename = os . path . join (DATADIR, xi + ".csv")
24 x = pd.read_csv(filename , parse_dates =["DATE"])
25 y = pd.merge(y, x, how="left" , on=["DATE"])
26 self . convertRateToFloat (y, xi )
27 y = self .calculateEndogExogVars(y, security , rates )
28 self . df = y
29

30 self . testdata = int ( trainPerc ∗ self . df .shape [0]) − 1
31 self . logger = logging .getLogger( self . __class__ .__name__)
32 self .model = None
33

34 def calculateEndogExogVars( self , y, col , rates ) :
35 vals = y. loc [:, col ]. values
36 ret = vals [1+ self .PERIOD:]/vals[1:−self .PERIOD] − 1
37
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38 y. loc [:, " positive_ret "] = 0
39 self .endIndex = y.shape[0] − self .PERIOD − 2
40 y. loc [0: self .endIndex, " positive_ret "] = np.where( ret > 0, 1.0, 0.0)
41

42 self .endog = " positive_ret "
43 y. loc [:, " lastret "] = 0
44 y. loc[2+ self .PERIOD:, " lastret "] = ret [0:−1]
45 y. loc [:, " indicator "] = np.where(y. lastret . values > 0.02, 1.0, 0.0)
46

47 ma3 = self .movingAverage(vals, 3)
48 ma10 = self .movingAverage(vals, 10)
49 y. loc [:, "ma3_10"] = 0.0
50 y. loc [11:, "ma3_10"] = np.where(ma3[10:−1] > ma10[10:−1], 1.0, 0.0)
51

52 vol21day = self . volatility ( ret , 21)
53 vol1yr = self . volatility ( ret , 252)
54 y. loc [:, "vol21_252"] = 0
55 y. loc[253+self .PERIOD:, "vol21_252"] = np.where(vol21day[252:] > vol1yr [252:],

1.0, 0.0)
56

57 # percent change in interest rate over the period
58 rate_change_cols = []
59 for rate in rates :
60 col = rate + "_change"
61 rval = y. loc [:, rate ]. values
62 rval = np.where(rval == 0, 1E−8, rval)
63 change = rval [ self .PERIOD:] / rval [0:− self .PERIOD] − 1
64 y. loc [:, col ] = 0
65 y. loc[1+ self .PERIOD:, col] = change[0:−1]
66 rate_change_cols .append(col)
67

68 self .exog = [" indicator " , "ma3_10", "vol21_252"] + rate_change_cols
69 self . nvars = len ( self .exog)
70 self .beginIndex = 253
71 return y
72

73 def movingAverage(self , arr , period ) :
74 res = np.zeros ( arr .shape [0], dtype=np. float64 )
75 sumval = np.sum(arr [0: period ])
76 for i in range(period , arr .shape [0]) :
77 res [ i ] = sumval / period
78 sumval += arr [ i ] − arr [ i−period]
79

80 return res
81

82 def volatility ( self , arr , period ) :
83 res = np.zeros ( arr .shape [0], dtype=np. float64 )
84 sumval = np.sum(arr [0: period ])
85 sumsq = np.dot( arr [0: period ], arr [0: period ])
86 for i in range(period , arr .shape [0]) :
87 res [ i ] = np. sqrt (sumsq/period − (sumval/period )∗∗2)
88 sumval += arr [ i ] − arr [ i−period]
89 sumsq += arr [ i ]∗ arr [ i ] − arr [ i−period]∗arr [ i−period]
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90 return res
91

92 def convertRateToFloat ( self , df , col ) :
93 df . loc [:, col ] = df . loc [:, col ]. replace (" . " , np.nan) . astype (np. float64 ) . ffill ()
94 df . loc [:, col ] = df . loc [:, col ] / 100.0 # convert to decimal
95

96 def convertColumnToFloat(self , df , col ) :
97 if (df . loc [:, col ] == " . ") .sum() > 0:
98 df .drop(np.where(df. loc [:, col ] == " . ") [0], inplace=True)
99 df . loc [:, col ] = df . loc [:, col ]. astype (np. float64 )

100 df . reset_index (drop=True, inplace=True)
101

102 def fit ( self ) :
103 y = self . df . loc [ self .beginIndex: self . testdata , self .endog]. values
104 X = self . df . loc [ self .beginIndex: self . testdata , self .exog]. values
105 X = sm.add_constant(X, has_constant="add")
106 glm = sm.GLM(y, X, family=sm.families.Binomial( link=sm.families . links . logit () ) )
107 glm = glm. fit ()
108 self . logger . info (glm.summary(xname=['constant'] + self .exog))
109 summaryfile = os . path . join (PLOTDIR, self.__class__ .__name__ + ". txt ")
110 with open(summaryfile, 'w') as fh :
111 fh . write (glm.summary(xname=['constant'] + self .exog). as_text () )
112 self .model = glm
113

114 def plotResid ( self ) :
115 fig , axs = plt . subplots (nrows=3, ncols=1, figsize =(10, 10))
116 yendog = self .model.model.endog
117 yhatv = self .model. predict ( self .model.model.exog)
118 resid = yendog − yhatv
119

120 dates = self . df . loc [ self .beginIndex: self . testdata , "DATE"].values
121

122 axs [0]. plot ( dates , resid )
123 axs [0]. grid ()
124 axs [0]. set_title ("Residual Plot ( Training Dataset )")
125 axs [1]. hist (yhatv , bins=40, density=True)
126 axs [1]. grid ()
127 axs [1]. set_title ("Histogram of Residuals")
128 axs [2]. plot ( dates , yendog, label ="y")
129 axs [2]. plot ( dates , yhatv , "−.", label ="ypred")
130 axs [2]. grid ()
131 axs [2]. legend ()
132 axs [2]. set_title (" Predicted vs . Actual")
133 plt . tight_layout ()
134 plt . savefig (os . path . join (PLOTDIR, "trainResidBinomial.jpeg") ,
135 dpi=500)
136

137 def plotTestResults ( self , y, ypred) :
138 fig , axs = plt . subplots (nrows=2, ncols=1, figsize =(10, 10))
139 resid = (y − ypred)
140

141 dates = self . df . loc [ self . testdata +1: self .endIndex, "DATE"].values
142 axs [0]. hist ( resid , bins=40, density=True)
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143 axs [0]. grid ()
144 axs [0]. set_title ("Histogram of Residuals")
145 axs [1]. plot ( dates , y, label ="y")
146 axs [1]. plot ( dates , ypred, "−.", label ="ypred")
147 axs [1]. grid ()
148 axs [1]. legend ()
149 axs [1]. set_title (" Predicted vs . Actual")
150 plt . tight_layout ()
151 plt . savefig (os . path . join (PLOTDIR, "testResidBinomial.jpeg") ,
152 dpi=500)
153

154 def test ( self ) :
155 testdata = self . testdata + 1
156 y = self . df . loc [ testdata : self .endIndex, self .endog]. values
157 X = self . df . loc [ testdata : self .endIndex, self .exog]. values
158 X = sm.add_constant(X, has_constant="add")
159 ypred = self .model. predict (X)
160 self . plotTestResults (y, ypred)
161

162

163 if __name__ == "__main__":
164 glm = BinomialGLM("SP500", ["DGS1MO"])
165 # TERMCBCCALLNS: CB interest rate on credit cards (monthly) 100
166 # CCLACBW027SBOG: Loan on credit card and other revolving plans (weekly) 200
167 glm. fit ()
168 glm.plotResid ()
169 glm. test ()

Code Explanation
A code walk-through is presented below with the purpose of highlighting salient
code features:

1. The code instantiates an object of class BinomialGLM, passing the constructor
arguments specifying the endogenous and exogenous variables.

2. Daily end-of-day prices of S&P 500 are used to construct the endogenous
variable. This dataset is available in the FRED database under the label SP500
[14].

3. The BinomialGLM class reads the file containing S&P 500 daily closing
prices.

4. It calls the method calculateEndogExogVars to calculate the final endogenous
and exogenous variables.

5. The class defines a constant PERIOD to be five trading days (or approximately
one week). It calculates five-day return on S&P500, with the value 5 coming
from the definition of PERIOD.
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6. It calculates column lastret as the trailing five-day return using the definition
lr(t) = P(t)

P (t−5) − 1.
7. An indicator variable indicator is calculated which is defined to be 1 if lastret

is greater than 2% or 0.02 and 0 otherwise.
8. It calculates the three-day and ten-day moving averages of closing price for S&P

500. It computes an exogenous variable ma3_10 and the difference between
three-day and ten-day moving averages of S&P 500 closing prices. The three-
day moving average responds faster than the ten-day moving average to recent
changes in price. Taking the difference between a short duration (three-day) and
long duration (ten-day) moving average gives a measure of price momentum.

9. It calculates the 21-day and 252-day volatility of returns for S&P 500. 21 trading
days correspond roughly to 1 month, while 252 trading days translate to 1 year.
Following this, it computes an indicator variable vol21_252 which takes a value
of 1 if 21-day volatility is greater than 252-day volatility and 0 otherwise.

10. Because volatility values get populated after 252 days due to the definition of
the 252-day volatility, data begins from the 252nd observation.

11. The class uses 90%–10% as the training-testing data split.
12. The endogenous variable is the following five-day return on S&P 500.
13. After adding a column of ones to the exogenous variables to include an

intercept term, it fits the binomial GLM model using the GLM class from the
statsmodels package and passing the endogenous variable and the exogenous
variables including a constant and the Binomial family of functions with the
logit link function.

14. Model fit statistics are printed.
15. It produces a plot of residuals observed for the training dataset.
16. It makes a prediction on the test dataset and plots the results against actual S&P

500 five-day returns.

The plot of the predicted probability of observing a positive weekly return
against the ground truth if the actual weekly return was positive or not on the test
dataset is shown in Figure 3-8. It can be seen from the plot that the predicted
probability hovers around 0.6, which is the average probability of observing a
positive weekly return in the training dataset. As expected for a market variable, the
overall fit is poor. This can be improved by using non-linear models such as deep
neural networks. It may also be possible to improve the fit by including additional
exogenous variables.

3.2.4 GammaDistribution

The gamma distribution is used to model the wait time for the αth occurrence of
an event when the average time for an event to occur is β. While the Poisson
distribution governs the number of event occurrences in a given time interval, the
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Fig. 3-8. Fitting Binomial GLM to Predict If Weekly Market Return Is Positive on Test Dataset

gamma distribution models the wait time, or the time for a certain number of event
occurrences, as shown for a few sample gamma distributions in Figure 3-9. The
distribution is given by Equation 3-19, where y denotes the wait time, α denotes the
number of event occurrences, and β denotes the average time for an event to occur.
The domain of the gamma distribution is y ∈ [0,∞).

f (y;α, β) = e−βyβαyα−1

�(α)

where �(α) =
∫ ∞

0
e−xxα−1dx

(3-19)



70 3 Generalized Linear Model

Fig. 3-9. Gamma Distribution

As before, let us write the probability distribution function in the form of the
exponential distribution and calculate the mean and variance of y, as shown in
Equation 3-20.

f (y;α, β) = exp

(
yβ − α logβ

−1
+ (α − 1) log y − log�(α)

)

∴ θ = β

b(θ) = α logβ = α log θ and a(φ) = −1

E[y] = b′(θ) = α

θ
= α

β

var(y) = b′′(θ)a(φ) = α

θ2
= α

β2

(3-20)

In order to get the canonical link function for the gamma distribution, set θ =
η. Recall that η is equal to the dot product of parameters and regressors, X. β in
Equation 3-20 must be distinguished from the parameters of the linear model, which
was denoted using the same symbol. From Equation 3-20, E[y] = α

β
= α

η
because
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β = θ . Therefore, E[y] = α
η
. We can absorb the constant α into model parameters

in η to write E[y] = 1
η
. This shows that the canonical link function is the reciprocal

function or η = 1
μ
.

Application
Let us use the gamma distribution to predict the quarter in a year when the number of
new non-farm payroll jobs created in the United States exceeds 300,000. Non-farm
payroll is a key econometric measure tracked by economists, market participants,
and the Federal Reserve to monitor the health of the economy and to predict where
inflation is headed. Strong payroll numbers that exceed expectations are a reliable
signal of the economy’s strength and may presage higher inflation. This may spur
the Federal Reserve to tighten monetary conditions. It is conceivable that economists
may upgrade their assessment of the economy’s health once the number of new
jobs created crosses a certain threshold. Likewise, the central bank may need to
recalibrate its interest rate strategy once the number of new jobs in the non-farm
sector crosses a certain threshold. Let us see how the gamma distribution–based
GLM can be used to predict when the number of new non-farm jobs created in a
year crosses a threshold of 300,000.

The number of non-farm payroll jobs created monthly does not remain constant,
as seen from the plot of this variable shown in Figure 3-10. This suggests that one
of the exogenous variables should be the real GDP growth. Let us also use a second
exogenous variable – growth rate in the market index (S&P 500). The model is
shown in Equation 3-21. Real GDP is reported quarterly, S&P 500 closing prices
are available daily, and the endogenous variable, non-farm payroll, is available
monthly. Because the biggest time difference between two successive observations
of a variable is a quarter, let us align all variables to the beginning of the quarter.
S&P 500 closing price on the first trading day of each quarter is used. Non-farm
payrolls reported for three months in a quarter are added to get the quarterly non-
farm payroll. Finally, we would like to predict which quarter in a year would first
witness the cumulative non-farm payrolls in that year venturing above the 300,000
level.

g (N(t)) = α + β1
GDP(t) − GDP(t − 3Yr)

GDP(t − 3Yr)
+

β2
SP500(t) − SP500(t − 3Yr)

SP500(t − 3Yr)
+ ε(t)

N(t) = Average quarterly non-farm payroll observed over a year

g(Z) = 1

Z

(3-21)
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Fig. 3-10. Non-farm payroll

The model variables are tabulated below:

1. Endogenous variable: Average quarterly non-farm payroll. This variable is
calculated by adding the non-farm payroll numbers for three months in each
quarter, followed by taking an average of the quarterly non-farm payroll over the
following four quarters (or one year). Seasonally adjusted non-farm payroll is
published monthly by the US Bureau of Labor Statistics. It is denoted by N(t).

2. Exogenous variable 1: Three-year growth rate in real GDP, denoted by
GDP(t)−GDP(t−3Yr)

GDP(t−3Yr)
.

3. Exogenous variable 2: Three-year growth rate in the S&P 500 index, denoted
by SP500(t)−SP500(t−3Yr)

SP500(t−3Yr)
.
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Table 3-2. Testing Predictions of Quarterly Non-farm Payroll Using Gamma GLM Model

Predicted Actual Pred Qtr Actual QtrAvg

Date Quarter Quarter Payroll Payroll Perc Diff

2021-01-01 0 0.00 429443.89 438827.75 −0.02

2022-01-01 0 0.00 420511.25 457594.00 −0.08

2023-01-01 0 0.00 461238.15 468775.75 −0.02

Listing 3-5. Statistics of Training Gamma GLM Model

1 Generalized Linear Model Regression Results
2 ============================================================
3 Dep. Variable : y No. Observations : 11
4 Model: GLM Df Residuals : 8
5 Model Family: Gamma Df Model: 2
6 Link Function: inverse_power Scale : 0.00024260
7 Method: IRLS Log−Likelihood: −114.38
8 Date: Sun, 19 May 2024 Deviance: 0.0019295
9 Time: 12:05:38 Pearson chi2 : 0.00194

10 No. Iterations : 5 Pseudo R−squ. (CS): 0.6774
11 Covariance Type: nonrobust
12 ============================================================
13 coef std err z P>|z | [0.025 0.975]
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 constant 1.627e−06 4.17e−08 39.049 0.000 1.54e−06 1.71e−06
16 GDPC1_3year_perc_change −3.531e−07 3.07e−07 −1.151 0.250 −9.54e−07 2.48e−07
17 SP500_3year_perc_change 3.097e−07 9.78e−08 3.167 0.002 1.18e−07 5.01e−07
18 ============================================================

Statistics for fitting the gamma GLMmodel are shown in Listing 3-5. Pseudo-R2

of the model is 0.68. Data begins from 2014 and is quarterly. 90% of the data is used
for training, with the remaining 1% used for testing. Due to the quarterly sampling
frequency, the number of data points is somewhat limited.

The test dataset contains three data points, and the fitted model is able to correctly
predict that the number of non-farm payrolls will exceed 300,000 in the first quarter
for all of them. Comparing the predicted quarterly non-farm payroll against the
actual quarterly average non-farm payroll calculated over the following year, we
observe the predictions to range between –2% and –8%, as shown in Table 3-2.
For the quarter beginning on January 1, 2021, the model predicts quarterly non-
farm payroll to be 429443.89, and the actual value was observed to be 438,827.75,
showing that the model does a decent job at predicting quarterly non-farm payroll
for this limited test dataset. The full code can be found in Listing 3-6.
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Listing 3-6. Gamma Generalized Linear Model

1 import numpy as np
2 import pandas as pd
3 import statsmodels . api as sm
4 import matplotlib . pyplot as plt
5 import os
6 import logging
7

8

9 DATADIR = r"C:\prog\cygwin\home\samit_000\latex\book_stats \code\data"
10 PLOTDIR = r"C:\prog\cygwin\home\samit_000\latex\book_stats \code\ plots "
11 logging . basicConfig ( level =logging.DEBUG)
12

13

14 class GammaGLM(object):
15 PERIOD = 5
16

17 def __init__ ( self , endog, exog, trainPerc =0.9) :
18 filename = os . path . join (DATADIR, endog + ".csv")
19 y = pd.read_csv(filename , parse_dates =["DATE"])
20 self .convertColumnToFloat(y, endog)
21 self .plotEndog(y, endog)
22 y. loc [:, ' quarter ' ] = ((y.DATE.dt.month.values − 1) // 3)
23 y. loc [:, ' year ' ] = y.DATE.dt.year
24 ypart = y[[ ' year ' , ' quarter ' , endog]]
25 ypart = ypart .groupby([ ' year ' , ' quarter ' ]) .sum(). reset_index (drop=False)
26 y.drop(columns=[endog], inplace=True)
27 y = pd.merge(y, ypart , on=[' year ' , ' quarter ' ], how="left")
28 self .beginIndex = None
29 self .endIndex = None
30 self .origEndog = endog
31 for xi in exog:
32 filename = os . path . join (DATADIR, xi + ".csv")
33 x = pd.read_csv(filename , parse_dates =["DATE"])
34 x. loc [:, "MonthBegin"] = x.DATE + pd.offsets .MonthBegin(0)
35 x = x.groupby(["MonthBegin"]). first () . reset_index (drop=False)
36 x.DATE = x.MonthBegin
37 y = pd.merge(y, x, how="inner", on=["DATE"])
38 self .convertColumnToFloat(y, xi )
39 y = self .calculateEndogExogVars(y, endog, exog)
40 self . df = y
41

42 self . testdata = int ( trainPerc ∗ ( self .endIndex − self .beginIndex) ) + self .
beginIndex

43 self . logger = logging .getLogger( self . __class__ .__name__)
44 self .model = None
45

46 def plotEndog( self , df , endog):
47 fig , axs = plt . subplots (nrows=1, ncols=1, figsize =(10, 10))
48 y = df . loc [:, endog]. values
49 dates = df .DATE.values
50 axs . plot ( dates , y)
51 axs . grid ()
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52 axs . set_title ("Non−Farm Payroll Employment")
53 plt . tight_layout ()
54 plt . savefig (os . path . join (PLOTDIR, "nonFarmPayroll.jpeg"),
55 dpi=500)
56

57 def calculateEndogExogVars( self , df , endog, exog):
58 vals = df . loc [:, endog]. values
59 yvar = "AvgNonFarmPayrollPerQtr"
60 df . loc [:, yvar] = 0.0
61 for i in range (3, df .shape [0]) :
62 df . loc [ i − 3, yvar] = vals [ i−3:i+1].mean()
63 self .endog = yvar
64

65 # 3−year percent change in real GDP, SP500
66 exog_cols = []
67 for x in exog:
68 col = x + "_3year_perc_change"
69 rval = df . loc [:, x ]. values
70 rval = np.where(rval == 0, 1E−8, rval)
71 change = rval [11:] / rval [0:−11] − 1
72 df . loc [:, col ] = 0
73 df . loc [11:, col ] = change
74 exog_cols .append(col)
75

76 self .exog = exog_cols
77 self . nvars = len ( self .exog)
78 self .beginIndex = 12
79 self .endIndex = df .shape[0] − 12
80 return df
81

82 def convertColumnToFloat(self , df , col ) :
83 if (df . loc [:, col ] == " . ") .sum() > 0:
84 df .drop(np.where(df. loc [:, col ] == " . ") [0], inplace=True)
85 df . loc [:, col ] = df . loc [:, col ]. astype (np. float64 )
86 df . reset_index (drop=True, inplace=True)
87

88 def fit ( self ) :
89 y = self . df . loc [ self .beginIndex: self . testdata , self .endog]. values
90 X = self . df . loc [ self .beginIndex: self . testdata , self .exog]. values
91 X = sm.add_constant(X, has_constant="add")
92 glm = sm.GLM(y, X, family=sm.families.Gamma(link=sm.families.links .

inverse_power () ) )
93 glm = glm. fit ()
94 self . logger . info (glm.summary(xname=['constant'] + self .exog))
95 summaryfile = os . path . join (PLOTDIR, self.__class__ .__name__ + ". txt ")
96 with open(summaryfile, 'w') as fh :
97 fh . write (glm.summary(xname=['constant'] + self .exog). as_text () )
98 self .model = glm
99

100 def plotResid ( self ) :
101 fig , axs = plt . subplots (nrows=1, ncols=1, figsize =(10, 10))
102 yendog = self .model.model.endog
103 yhatv = self .model. predict ( self .model.model.exog)
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104

105 dates = self . df . loc [ self .beginIndex: self . testdata , "DATE"].values
106

107 axs . plot ( dates , yendog, label ="y")
108 axs . plot ( dates , yhatv , "−.", label ="ypred")
109 axs . grid ()
110 axs . legend ()
111 axs . set_title (" Predicted vs . Actual")
112 plt . tight_layout ()
113 plt . savefig (os . path . join (PLOTDIR, f"trainResid{self . __class__ .__name__}.jpeg"),
114 dpi=500)
115

116 def tabulateTestResults ( self ) :
117 # calculate the month when non−farm payroll reaches or exceeds 300K
118 yvar = "MonthPayRollGt300K"
119 ypredvar = "PredMonthPayRollGt300K"
120 df = self . df
121 month = df . loc [:, "DATE"].dt.month
122 begin_month = np.where(month.values == 1)
123 df . loc [:, yvar] = 0.0
124 df . loc [:, ypredvar] = 0
125 endog = df . loc [:, self .origEndog]. values
126 month_indx = []
127

128 for i in begin_month[0]:
129 if ( i > self . testdata ) and (df . loc [ i , self .endog] != 0.0) :
130 month_indx.append(i)
131 total = np.cumsum(endog[i:i+4])
132 df . loc [ i , yvar] = np.where( total >= 300000)[0][0]
133 df . loc [ i , ypredvar] = int (300000 / df . loc [ i , "ypred" ])
134 self . logger . info ("Date: %s, predicted quarterly non−farm payroll: %f,

actual : %f", df . loc [ i , "DATE"],
135 df . loc [ i , "ypred" ], df . loc [ i , self .endog])
136

137 dates = df . loc [month_indx, "DATE"].values
138 yval = df . loc [month_indx, yvar ]. values
139 yvalhat = df . loc [month_indx, ypredvar ]. values
140 prollhat = df . loc [month_indx, "ypred" ]. values
141 proll = df . loc [month_indx, self .endog]. values
142

143 df = pd.DataFrame({"Date": dates , " Predicted Quarter" : yvalhat ,
144 "Actual Quarter" : yval ,
145 " Predicted Qtr Payroll " : prollhat ,
146 "Actual QtrAvg Payroll " : proll })
147 df . loc [:, "Perc Diff"] = df . loc [:, " Predicted Qtr Payroll "] / df . loc [:, "Actual

QtrAvg Payroll "] − 1
148

149 df . to_csv(os . path . join (PLOTDIR, f"{self.__class__ .__name__}.csv"), index=False)
150 self . logger . info (df . to_latex (index=False , float_format ="{:.2 f}" . format) )
151 self . logger . info (df)
152

153 def test ( self ) :
154 testdata = self . testdata + 1
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155 X = self . df . loc [ testdata :, self .exog]. values
156 X = sm.add_constant(X, has_constant="add")
157 ypred = self .model. predict (X)
158 self . df . loc [:, "ypred"] = 0.0
159 self . df . loc [ testdata :, "ypred"] = ypred
160 self . tabulateTestResults ()
161

162

163 if __name__ == "__main__":
164 glm = GammaGLM("PAYEMS", ["GDPC1", "SP500"])
165 # PAYEMS: Nonfarm payroll (monthly), seasonally adjusted
166 # CCLACBW027SBOG: Loan on credit card and other revolving plans (weekly) 200
167 # PCEPI: PCE price index (monthly) 100
168 # DSPIC96: Real disposable income (monthly) 2000
169 # MORTGAGE30US: 30 year mortgage rate (weekly) 100
170

171 glm. fit ()
172 glm.plotResid ()
173 glm. test ()

Code Explanation
A code walk-through is presented below as an aid to understanding the code:

1. The code instantiates an object of classGammaGLM, passing endogenous and
exogenous variables as constructor arguments.

2. The model uses seasonally adjusted non-farm payroll data available from the
FRED database under the label PAYEMS [15]. This data is published monthly.

3. Exogenous variables include real gross domestic product GDPC1 available
from [16] and closing prices of S&P 500 [14]. While real GDP data is available
quarterly, S&P 500 closing prices are available daily on trading days.

4. It reads the data files as comma-separated data using the pandas library.
5. It produces a plot of non-farm payroll to give a high-level overview of the data.
6. It extracts year quarter and month from the dates and joins the dataframes to

obtain quarterly data. Since non-farm payroll data is available monthly, we only
keep the values reported during months falling at the beginning of each quarter.
The quarter is extracted from the date by performing an integer division of zero-
index month with three because each quarter contains three months.

7. Final endogenous and exogenous variables are then computed inside the
method calculateEndogExogVars. It calculates the average non-farm payroll
per quarter using the three months falling in a quarter. This is the endogenous
variable. Exogenous variables are three-year growth rates (or percent changes)
observed in real GDP and S&P 500 closing prices. Since 3 years have 12
quarters, calculations are performed accordingly.

8. Gamma GLM is then fitted using the Gamma family of functions with the
inverse_power link function. This link function takes the reciprocal of the
argument.

9. Model fitting statistics are printed followed by testing results.
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10. A table comparing the actual and predicted non-farm payroll for the test dataset
is generated.

3.2.5 Inverse GammaDistribution

The inverse gamma distribution is similar to the gamma distribution except that
it involves the reciprocal of the input variable y. Its domain is y ∈ [0,∞).
The probability density function for this distribution is shown in Equation 3-22.
Parameter α denotes the average.

f (y;α, β) = βα

�(α)

(
1

y

)(α+1)

exp(−β

y
)

= βα

�(α)
(y)−(α+1) exp(

β

y
)

= f gamma(
1

y
, α, β)

(3-22)

This distribution can be transformed into a gamma distribution as shown in
Equation 3-22. The canonical link for this distribution is η = 1

μ2 .

3.2.6 Multinomial Distribution

Amultinomial distribution is often employed in classification tasks when a response
variable can be one ofK specified distinct values, whereK is fixed and prespecified.
This can be viewed as a classification problem, with the response variable y

indicating the class to which the observation belongs. The multinomial distribution
is a generic counterpart of the binomial distribution where the number of classes is
2. It is a discrete distribution.

Let pi denote the probability of an observation belonging to class i. We have∑K
i=1 pi = 1. The probability mass function of the multinomial distribution gives

the probability of observing yi observations belonging to class i from a total of N

classes. This probability mass function is shown in Equation 3-23.

prob(y1, y2, · · · , yK |p1, p2, · · · , pK) = N !
K∏

i=1

p
yi

i

yi !
K∑

i=1

yi = N where yi ∈ [0, 1, · · · , N]

K∑
i=1

pi = 1

(3-23)
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For each class i in a set of N classes, the probability of belonging to class i can
be written as shown in Equation 3-24. Being probabilities, they must all add to 1.
This constraint is also shown in Equation 3-24. xj denotes a set of K +1 exogenous
variables including a constant, where j ∈ (0, 1, 2, · · · ,K).

yi = exp
(
β0,i + β1,ix1 + · · · βK,ixK

)

= exp

⎛
⎝β0,i +

K∑
j=1

βj,ixj

⎞
⎠

i ∈ [1, 2, · · · , N] number of classes

pi = yi∑N
a=1 ya

(3-24)

We can select one class as a pivot and express the probability of remaining classes
as shown in Equation 3-25. In this equation, we have selected the first class as the
pivot. As seen from this equation, the number of free parameters is (N −1)∗(K+1)
if we include a constant in each equation. The free parameters are γj,i where j ∈
[0, 1, · · · ,K] and i ∈ [2, 3, · · · , N] where γj,i = βj,i − βj, 1.

pi = yi∑N
a=1 ya

=
yi

y1

1 + ∑N
a=2

ya

y1

for i ∈ [2, 3, · · · , N]

p1 = 1 −
N∑

a=2

pa

pi = exp
(
β0,i − β0,1 + (

β1,i − β1,1
)
x1 + · · · + (

βK,i − βK,1
)
xK

)

1 + ∑N
a=2

[
β0,a − β0,1 + (

β1,a − β1,1
)
x1 + · · · + (

βK,a − βK,1
)
xK

]

= exp
(
γ0,i + γ1,ix1 + · · · + γK,ixK

)

1 + ∑N
a=2

[
γ0,a + γ1,ax1 + · · · + γK,axK

]
(3-25)

Application
Volatility and return are important predictors used by portfolio managers to decide
which stock to buy. Asset managers want to hold assets that have high return with
low volatility or risk. Let us try to predict whether the return of S&P 500 over a
five-day holding period will fall in one of the four buckets defined as follows. Let
us partition the scale of returns into two distinct buckets signifying low or high
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Table 3-3. Selecting Return
and Volatility Thresholds at
50% for S&P 500

Level Return Volatility

count 2262.000 2262.000

mean 0.002 0.011

std 0.023 0.009

min −0.180 0.000

25% −0.007 0.005

50% 0.004 0.008

75% 0.014 0.014

max 0.174 0.082

returns. The return partitions are (−∞, 0.004] and (0.004,∞) and represent low
and high returns, respectively. Similarly, let us partition volatility into two buckets
as [0, 0.008] and (0.008,∞) corresponding to low and high volatility regimes,
respectively. The threshold values for return and volatility regimes are selected by
examining the distribution of return and volatility over the training dataset. Values
at 50% level are selected, as seen from Table 3-3. The final four buckets are then
defined by taking a cross product of the two return and volatility regimes; for
example, one would get high return high volatility, high return low volatility, etc.
Both return and volatility of returns are calculated over a five-day period. A plot of
S&P 500 closing value is shown in Figure 3-11.

Let us denote the endogenous variable as the probability that the five-day return
of S&P 500 falls in each of the four return-volatility buckets. Let Pi(t) denote the
probability that the five-day return falls in bucket i, where i ∈ [0, 1, 2, 3]. Let us use
the following exogenous (predictor) variables:

1. Return for the past five days, r(t − 5) = P(t)−P(t−5)
P (t−5) .

2. Volatility of returns observed over the past five days, V (t − 5).
3. Difference between five-day and ten-day historical moving averages of closing

price, ma5−10(t). This feature is a momentum indicator because it shows how a
shorter moving average (five-day) compares with a longer moving average (ten-
day).

4. Change in the yield of a ten-year US treasury bond over the last five days,
�Y10yr (t).

5. Change in the yield of a one-month US treasury bill over the last five days,
�Y1Month(t).

The model is formulated in Equation 3-26. It has four equations with six
parameters each. There are five exogenous variables listed above and one constant
for each bucket. However, not all of these parameters are independent. The equation
for each bucket gives the probability of belonging to that bucket. Therefore, the sum
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Fig. 3-11. S&P 500

of probabilities in all buckets should be one. As described in Equation 3-25, this
constraint reduces the number of free parameters in the model to 18 (=(4 − 1) × 6).

yi(t) = exp
(
αi + βi,1r(t − 5) + βi,2V (t − 5)+

βi,3ma5−10(t) + βi,4�Y10yr (t) + βi,5�Y1Month(t)
)

i ∈ [0, 1, 2, 3, · · · , 8]

pi = yi∑4
a=1 ya

=
yi

y1

1 + ∑4
a=2

ya

y1

(3-26)
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for i ∈ [2, 3, 4]

p1 = 1 −
4∑

a=2

pa

Fitting the model to data, we get the coefficients shown in Listing 3-7. The
confusion matrix for training data is shown in Figure 3-12. Diagonal entries in the
confusion matrix show the number of elements classified correctly for each class.
We observe that the model does a better job in classifying observations belonging
to low return low volatility and high return high volatility classes.

Listing 3-7. Fitting Multinomial Logistic GLM Model

1 MNLogit Regression Results
2 =====================================================================
3 Dep. Variable : y No. Observations : 2235
4 Model: MNLogit Df Residuals : 2217
5 Method: MLE Df Model: 15
6 Date: Wed, 29 May 2024 Pseudo R−squ.: 0.1544
7 Time: 19:41:40 Log−Likelihood: −2618.9
8 converged: True LL−Null: −3097.1
9 Covariance Type: nonrobust LLR p−value: 2.954e−194

10 =====================================================================
11 y=1 coef std err z P>|z | [0.025 0.975]
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 constant −0.1205 0.180 −0.670 0.503 −0.473 0.232
14 Last5DayRet 24.9083 4.667 5.337 0.000 15.761 34.056
15 Last5DayVolat 79.3006 17.312 4.581 0.000 45.370 113.231
16 ma5_10 −0.5912 0.151 −3.921 0.000 −0.887 −0.296
17 DGS10_diff −0.9804 0.685 −1.432 0.152 −2.323 0.362
18 DGS1MO_diff −1.6608 1.223 −1.358 0.175 −4.058 0.737
19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 y=2 coef std err z P>|z | [0.025 0.975]
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 constant −1.5544 0.184 −8.449 0.000 −1.915 −1.194
23 Last5DayRet 0.5138 4.311 0.119 0.905 −7.936 8.964
24 Last5DayVolat 258.7038 16.662 15.526 0.000 226.046 291.362
25 ma5_10 −0.8325 0.153 −5.439 0.000 −1.133 −0.532
26 DGS10_diff −2.6218 0.699 −3.749 0.000 −3.993 −1.251
27 DGS1MO_diff 1.1493 1.172 0.981 0.327 −1.147 3.446
28 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 y=3 coef std err z P>|z | [0.025 0.975]
30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 constant −1.7393 0.187 −9.280 0.000 −2.107 −1.372
32 Last5DayRet −9.0519 4.361 −2.076 0.038 −17.599 −0.504
33 Last5DayVolat 273.0841 16.839 16.217 0.000 240.080 306.088
34 ma5_10 −1.1208 0.158 −7.100 0.000 −1.430 −0.811
35 DGS10_diff −4.5161 0.725 −6.227 0.000 −5.938 −3.095
36 DGS1MO_diff 2.8562 1.178 2.425 0.015 0.548 5.164
37 =====================================================================
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Fig. 3-12. Confusion Matrix of Multinomial GLM Model on Training Data

To evaluate the model performance, the confusion matrix of predictions on
testing data is shown in Figure 3-13. On testing data, one observes that the model
does a better job at predicting observations in high return high volatility and high
return low volatility classes.

The complete code for fitting and testing the model is shown in Listing 3-8.
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Fig. 3-13. Confusion Matrix of Multinomial GLM Model on Test Dataset

Listing 3-8. Multinomial Logistic Generalized Linear Model

1 import numpy as np
2 import pandas as pd
3 import statsmodels . api as sm
4 import matplotlib . pyplot as plt
5 import os
6 import logging
7 import bisect
8 from sklearn . metrics import confusion_matrix
9 import seaborn as sns

10

11

12 DATADIR = r"C:\prog\cygwin\home\samit_000\latex\book_stats \code\data"
13 PLOTDIR = r"C:\prog\cygwin\home\samit_000\latex\book_stats \code\ plots "
14 logging . basicConfig ( level =logging.DEBUG)
15

16
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17 class MultinomialGLM(object):
18 PERIOD = 5
19

20 def __init__ ( self , endog, exog, trainPerc =0.9) :
21 self . logger = logging .getLogger( self . __class__ .__name__)
22 filename = os . path . join (DATADIR, endog + ".csv")
23 self . trainPerc = trainPerc
24 y = pd.read_csv(filename , parse_dates =["DATE"])
25 self .convertColumnToFloat(y, endog)
26 self .plotEndog(y, endog)
27 self .beginIndex = 0
28 self . retThresholds = [0.004]
29 self . volatThresholds = [0.008]
30 self .bucketNames = ["Low Ret Low Vol", "High Ret Low Vol",
31 "Low Ret High Vol", "High Ret High Vol"]
32 for xi in exog:
33 filename = os . path . join (DATADIR, xi + ".csv")
34 x = pd.read_csv(filename , parse_dates =["DATE"])
35 y = pd.merge(y, x, how="inner", on=["DATE"])
36 self .convertColumnToFloat(y, xi )
37 self .endIndex = y.shape[0] − self .PERIOD
38 self . testdata = int ( trainPerc ∗ ( self .endIndex − self .beginIndex) ) + self .

beginIndex
39 y = self .calculateEndogExogVars(y, endog, exog)
40 self . df = y
41 self .model = None
42

43 def getBucketNumber(self, retList , volatList ) :
44 b1 = np. array ([ bisect . bisect_left ( self . retThresholds , ret ) for ret in retList ])
45 b2 = np. array ([ bisect . bisect_left ( self . volatThresholds , volat ) for volat in

volatList ])
46 return ( len ( self . retThresholds ) + 1) ∗ b2 + b1
47

48 def getBucketsAndName(self, num):
49 b2, b1 = divmod(num, len( self . retThresholds ) + 1)
50 return b1, b2, self .bucketNames[num]
51

52 def plotEndog( self , df , endog):
53 fig , axs = plt . subplots (nrows=1, ncols=1, figsize =(10, 10))
54 y = df . loc [:, endog]. values
55 dates = df .DATE.values
56 axs . plot ( dates , y)
57 axs . grid ()
58 axs . set_title ( f"Closing Value for {endog}")
59 plt . tight_layout ()
60 plt . savefig (os . path . join (PLOTDIR, f"{endog}.jpeg"),
61 dpi=500)
62

63 def calculateEndogExogVars( self , df , endog, exog):
64 vals = df . loc [:, endog]. values
65 ret = vals [ self .PERIOD:] / vals[0:− self .PERIOD] − 1
66 volatility = self . volatility ( ret , self .PERIOD)
67 df . loc [:, " ret "] = 0
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68 df . loc [:, " volatility "] = 0
69 df . loc [0: df .shape[0]−self .PERIOD−1, "ret"] = ret
70 df . loc [0: df .shape[0]−self .PERIOD−1, "volatility"] = volatility
71 self . logger . info (df . loc [0: self . testdata , [" ret " , " volatility " ]]. describe () )
72

73 bucketNums = self .getBucketNumber(ret, volatility )
74 df . loc [:, "bucket"] = 0
75 df . loc [0: df .shape[0]−self .PERIOD−1, "bucket"] = bucketNums
76 df . loc [:, "last5DayBucket"] = 0
77 df . loc [ self .PERIOD:, "last5DayBucket"] = bucketNums
78 self .beginIndex = max(self .PERIOD, 11)
79 self .endIndex = df .shape[0]−self .PERIOD
80 self . testdata = int ( self . trainPerc ∗ ( self .endIndex − self .beginIndex) ) + self .

beginIndex
81

82 bucketNameList = ["Bucket_" + str ( i ) for i in range (( len ( self . retThresholds )
+1)∗(len ( self . volatThresholds )+1))]

83 last5DayBucketNameList = ["Last5Day_" + b for b in bucketNameList]
84 for lnm, nm in zip (last5DayBucketNameList, bucketNameList):
85 df . loc [:, nm] = 0.0
86 df . loc [:, lnm] = 0.0
87

88 for i in range(df .shape[0]−self .PERIOD):
89 df . loc [ i , "Bucket_%d"%bucketNums[i]] = 1.0
90 df . loc [ i+self .PERIOD, "Last5Day_Bucket_%d"%bucketNums[i]] = 1.0
91

92 df . loc [:, "Last5DayRet"] = 0
93 df . loc [ self .PERIOD:, "Last5DayRet"] = ret
94 df . loc [:, "Last5DayVolat"] = 0
95 df . loc [ self .PERIOD:, "Last5DayVolat"] = volatility
96

97 ma5 = self .movingAverage(vals, 5)
98 ma10 = self .movingAverage(vals, 10)
99 df . loc [:, "ma5_10"] = 0.0

100 df . loc [11:, "ma5_10"] = np.where(ma5[10:−1] > ma10[10:−1], 1.0, 0.0)
101

102 ecols_list = []
103 for exog1 in exog:
104 evals = df . loc [:, exog1]. values
105 colnm = exog1 + " _diff "
106 df . loc [:, colnm] = 0
107 df . loc [ self .PERIOD:, colnm] = evals[ self .PERIOD:] − evals[0:−self.PERIOD]
108 ecols_list .append(colnm)
109

110 exog_cols = ["Last5DayRet", "Last5DayVolat", "ma5_10"] + ecols_list #
last5DayBucketNameList + ["Last5DayRet", "Last5DayVolat", "ma5_10"]

111 self .exog = exog_cols
112 self . nvars = len ( self .exog)
113 self .endog = bucketNameList
114 return df
115

116 def volatility ( self , arr , period ) :
117 res = np.zeros ( arr .shape [0], dtype=np. float64 )
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118 sumval = np.sum(arr [0: period ])
119 sumsq = np.dot( arr [0: period ], arr [0: period ])
120 for i in range(period , arr .shape [0]) :
121 res [ i ] = np. sqrt (sumsq/period − (sumval/period )∗∗2)
122 sumval += arr [ i ] − arr [ i−period]
123 sumsq += arr [ i ]∗ arr [ i ] − arr [ i−period]∗arr [ i−period]
124 return res
125

126 def movingAverage(self , arr , period ) :
127 res = np.zeros ( arr .shape [0], dtype=np. float64 )
128 sumval = np.sum(arr [0: period ])
129 for i in range(period , arr .shape [0]) :
130 res [ i ] = sumval / period
131 sumval += arr [ i ] − arr [ i−period]
132 return res
133

134 def convertColumnToFloat(self , df , col ) :
135 if (df . loc [:, col ] == " . ") .sum() > 0:
136 df .drop(np.where(df. loc [:, col ] == " . ") [0], inplace=True)
137 df . reset_index (drop=True, inplace=True)
138 df . loc [:, col ] = df . loc [:, col ]. astype (np. float64 )
139

140 def fit ( self ) :
141 y = self . df . loc [ self .beginIndex: self . testdata , self .endog]. values
142 X = self . df . loc [ self .beginIndex: self . testdata , self .exog]. values
143 X = sm.add_constant(X, has_constant="add")
144 glm = sm.MNLogit(y, X)
145 glm = glm. fit ()
146 glm.endog_names = self .endog
147 self . logger . info (glm.summary(xname=['constant'] + self .exog))
148 summaryfile = os . path . join (PLOTDIR, self.__class__ .__name__ + ". txt ")
149 with open(summaryfile, 'w') as fh :
150 fh . write (glm.summary(xname=['constant'] + self .exog). as_text () )
151 self .model = glm
152

153 def plotTrainingConfusionMatrix ( self ) :
154 yendog = self .model.model.endog
155 yhatv = self .model. predict ( self .model.model.exog)
156 mostProbableBucket = np.argmax(yhatv, axis=1)
157 self . plotResults (yendog, mostProbableBucket, label =" train ")
158

159 def plotResults ( self , y_true , y_pred, label =" test ") :
160 cm = confusion_matrix ( y_true , y_pred)
161 df = pd.DataFrame(cm.astype(np.int32 ) , index=self .bucketNames, columns=self.

bucketNames)
162 plt . figure ( figsize =(10, 10))
163 ax = sns .heatmap(df, annot=True, linewidths =0.5)
164 bottom, top = ax.get_ylim ()
165 ax. set_ylim (bottom + 0.5, top − 0.5)
166 plt . savefig (os . path . join (PLOTDIR, f"confusionMatrix_{label}_{self . __class__ .

__name__}.jpeg"),
167 dpi=500)
168 self . logger . info (df)
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169

170 def test ( self ) :
171 testdata = self . testdata + 1
172 X = self . df . loc [ testdata :, self .exog]. values
173 X = sm.add_constant(X, has_constant="add")
174 ypred = self .model. predict (X)
175 mostProbableBucket = np.argmax(ypred, axis=1)
176 actualBucket = np.argmax(self . df . loc [ testdata :, self .endog]. values , axis=1)
177 self . plotResults ( actualBucket , mostProbableBucket)
178

179

180 if __name__ == "__main__":
181 glm = MultinomialGLM("SP500", ["DGS10", "DGS1MO"])
182 # PAYEMS: Nonfarm payroll (monthly), seasonally adjusted
183 # CCLACBW027SBOG: Loan on credit card and other revolving plans (weekly) 200
184 # PCEPI: PCE price index (monthly) 100
185 # DSPIC96: Real disposable income (monthly) 2000
186 # MORTGAGE30US: 30 year mortgage rate (weekly) 100
187

188 glm. fit ()
189 glm. plotTrainingConfusionMatrix ()
190 glm. test ()

Code Explanation
Let us perform a code walk-through below:

1. An object of class MultinomialGLM is instantiated with endogenous and
exogenous variables as arguments. Closing prices of S&P 500 are used to
construct an endogenous variable, while yields on ten-year and one-month US
government debt obligations are used as exogenous variables.

2. All the data is available daily, on each trading day. This aids in joining the
datasets on date.

3. After reading the datasets, the code defines the four buckets used by the
multinomial logistic model as low volatility low return, low volatility high
return, high volatility low return, and high volatility high return.

4. Method calculateEndogExogVars computes the endogenous and exogenous
variables. It first computes the five-day return of S&P 500 followed by the five-
day return volatility.

5. The threshold separating low from high returns is set at 0.4%. Similarly, the
threshold separating low from high volatility is set at 0.008. These thresholds
are selected as 50 percentile points of return and volatility distributions observed
in the training dataset, as explained earlier.
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6. It assigns high or low return and volatility buckets to each data point inside
method getBucketNumber.

7. It computes the remaining exogenous variables: last five-day return, last five-
day volatility, and difference between five-day and ten-day moving average of
S&P 500 prices.

8. The endogenous variable is the bucket to which the data belongs. There are four
buckets: low volatility low return, low volatility high return, high volatility low
return, and high volatility high return.

9. The multinomial model is fitted to the data using the training dataset using the
MNLogit class of the statsmodels library, passing endogenous and exogenous
variables as arguments. A column of ones is added to exogenous variables to
include an intercept.

10. Model fit statistics as well as testing results are generated.

3.3 Maximum Likelihood

The objective function for generalized linear models is obtained using the log-
likelihood function. The maximum likelihood principle involves maximizing the
log-likelihood or minimizing the negative of log-likelihood with respect to model
parameters. Since the model parameters are encapsulated within parameter θ in
the log-likelihood expression of the exponential family of distributions, we only
consider terms involving θ . Using the canonical link function, θ = η = Xβ, we can
write the objective function for optimization for each of the distributions considered
earlier.

For the normal distribution, the maximum likelihood involves minimizing the
function in Equation 3-27, which can be obtained by taking the negative of the log-
likelihood function in Equation 3-12 and retaining only the terms involving θ , which
is equal to Xβ. For the canonical link function, this is also equal to the predicted
output, ŷ. Equation 3-27 can be solved using OLS.

min
β

N∑
i=1

(yi − Xβ)2 normal distribution,

min
β

N∑
i=1

(
yi − ŷi

)2

∴
N∑

i=1

(yi − Xiβ)Xi = 0

(3-27)

Similarly, for the Poisson distribution, the objective function can be written
using the negative of the log-likelihood function from Equation 3-15, as shown in
Equation 3-28. ŷi denotes the output of the model. Equation 3-28 is a non-linear
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equation that needs to be solved for β using Newton-Raphson or one of the secant
methods.

min
β

N∑
i=1

yi logμi − μi Poisson distribution

min
β

N∑
i=1

yi log ŷi − ŷi

min
β

N∑
i=1

yiXiβ − exp(Xiβ) using canonical link

∴
N∑

i=1

yiXi − exp(Xiβ)Xi = 0

(3-28)

For the binomial distribution, each observation has N = 1. Setting this in
Equation 3-17, we get the objective function as shown in Equation 3-29.

min
β

N∑
i=1

yi log
ŷi

1 − ŷi

+ log
(
1 − ŷi

)
binomial distribution

min
β

N∑
i=1

yi log ŷi + (1 − yi) log
(
1 − ŷi

)

min
β

N∑
i=1

yi log
1

1 + exp(−Xiβ)
+ (1 − yi) log

(
1 − 1

1 + exp(−Xiβ)

)

(3-29)

For the gamma distribution, note that E[y] = ŷ = α
β
as shown in Equation 3-20.

Taking the negative of the likelihood expression from Equation 3-20, we get the
objective function shown in Equation 3-30.

min
β

N∑
i=1

yi

ŷi

− log ŷi gamma distribution

min
β

N∑
i=1

yiXiβ + log(Xiβ)

(3-30)
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3.4 Binary Data

Binary data involves the output belonging to one of two classes, and it is customary
to denote the output as 0 or 1. Within the framework of generalized linear models,
there are a few alternative link functions available to handle binary data depending
upon the data distribution. A few of these alternatives are shown in Equation 3-31.

g(μ) = log

(
μ

1 − μ

)
logistic regression

g(μ) = �−1(μ) probit regression

g(μ) = log (− log (1 − μ))

g(μ) = − log (− logμ)

(3-31)

The first alternative shown in Equation 3-31 corresponds to logistic regression
using the sigmoid link function. This is the canonical link function when the
response variable y follows a Bernoulli distribution, i.e., P(y|X) ∼ bernoulli.
The second alternative in Equation 3-31 corresponds to probit regression. Probit
regression is often employed in the Heckman two-step correction procedure for
censored regression, described in a later chapter. The third and fourth alternatives
are less often used in practice.



4Kernel Regression

Kernel regression is an elegant method of extending generalized linear regression
to infinite-dimensional subspaces by leveraging the tools developed for linear
regression. In generalized linear regression, the exogenous variables are linear. By
including higher powers and non-linear combinations of exogenous variables, we
can take one step toward generalization. This enhancement enables us to improve
the accuracy of the fitted model. As an example, let us try to fit a logistic regression
model (from the class of generalized linear models) to data shown in Figure 4-1.
Logistic regression would attempt to fit a model shown in Equation 4-1. However,
it only involves linear exogenous variables. If one augments the space of exogenous

variables by adding x2

a2
+ y2

b2
, one can use logistic regression to classify the points.

This modified equation is shown in Equation 4-2.

y = 1

1 + exp− (α + β1x + β2y)

y ∈ [0, 1] probability of belonging to class 1

(4-1)

y = 1

1 + exp−
(
α + β1x + β2y + β3

(
x2

a2
+ y2

b2

))

y ∈ [0, 1] probability of belonging to class 1

(4-2)
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Figure 4-1. Data That Cannot Be Classified Using Logistic Regression with Linear Regressors

Kernel regression generalizes this approach by introducing kernel functions to
include infinite-dimensional spaces spanned by exogenous variables. In order to
understand how kernel methods achieve this, let us begin with linear regression but
include ψ(X) as a vector of exogenous variables. Function ψ may involve raising
exogenous variables to powers different from one or taking products with other
exogenous variables. We can write the loss function in Equation 4-3. Assuming that
the space of transformed exogenous variables ψ(X) span the subspace of model
coefficients β, we can write the weights βk as a linear combination of transformed
exogenous variables ψ(X), as shown in Equation 4-4.

L(β) = 1

2

N∑
i=1

⎛
⎝yi −

k∑
j=1

βjψj (Xi)

⎞
⎠

2

(4-3)
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βj =
K∑

k=1

γkψk(X)

L(β) = 1

2

N∑
i=1

⎛
⎝yi −

K∑
j=1

K∑
k=1

γkψk(Xi)ψj (Xi)

⎞
⎠

2

= 1

2

N∑
i=1

⎛
⎝yi −

K∑
j=1

K∑
k=1

γkK
(
ψk(Xi), ψj (Xi)

)
⎞
⎠

2

= 1

2

N∑
i=1

⎛
⎝yi −

K∑
k=1

γk

K∑
j=1

K
(
ψk(Xi), ψj (Xi)

)
⎞
⎠

2

= 1

2

N∑
i=1

⎛
⎝yi −

K∑
k=1

γk

K∑
j=1

Kj,k

⎞
⎠

2

= 1

2

N∑
i=1

⎛
⎜⎜⎝yi − [γ1γ2 · · · γK ]

⎡
⎢⎢⎣

K1,1 K1,2 · · · K1,K

K2,1 K2,2 · · · K2,K

· · ·
KK,1 KK,2 · · · KK,K

⎤
⎥⎥⎦

⎞
⎟⎟⎠

2

(4-4)

In Equation 4-4, function Ki,j is called the kernel function. If we can evaluate the
kernel functions, the problem in Equation 4-4 can be solved using OLS. The kernel
matrix K needs to be positive semi-definite, i.e., yT Ky ≥ 0 for any vector y. A few
examples of kernel functions are listed below:

1. Linear kernel: K(i, j) = XXT, where XT denotes the transpose of vector X.
This kernel can also be written as Ki,j = xixj , where xi is a component of
vector X.

2. Gaussian or radial kernel: K(i, j) = exp

(
−‖xi−xj‖2

2σ 2

)
.

3. Laplace kernel: K(i, j) = exp
(−L

∥∥xi − xj

∥∥)
.

4.1 Nadaraya-Watson Kernel Regression

Nadaraya [17] and Watson [18] proposed a methodology for kernel regression that
circumvents the necessity to solve a linear system. This methodology has been
widely adopted for kernel regression in practice because it speeds up computation.
By normalizing the kernels as shown in Equation 4-5, one can simply multiply the
kernel value with the endogenous variable and obtain a sum for all endogenous
variable to make a prediction. N denotes the number of data points or observations.
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Equation 4-5 formulates a value of endogenous variable without resorting to OLS
for solving a linear system of equations.

ŷ =
∑N

i=1 yiKh (x, xi)∑N
i=1 Kh (x, xi)

Kh(x, xi) = 1

h
K

(x

h
,
xi

h

)

Kh(gaussian)(x, xi) = 1

h
√
2π

exp

(
−‖x − xi‖2

2h2

)
(4-5)

In Equation 4-5, ŷ is the endogenous variable we want to predict when exogenous
variables have value x.

For categorical variables, Aitchison and Aitken [19] proposed a kernel shown in
Equation 4-6.

Kcategorical(x, xd) =
{
1 − λ if x = xd

λ
M−1 if x �= xd

x ∈ (x1, x2, · · · , xd, · · · , xM)

There are M categories

λ is a smoothing parameter

(4-6)

For applications with mixed categorical and numerical data, we can combine ker-
nels for categorical and numerical exogenous variables, as shown in Equation 4-7.

Kmixed(x, xi) = 1

Mh

N∑
i=1

Kcategorical(xcategorical, xd,categorical)

Knumerical(xnumerical, xd,numerical)

(4-7)

4.2 Application

Let us use kernel regression to predict sector returns using market returns as the
predictor (exogenous) variable. The S&P 500 index can be decomposed into 11
different sectors, based upon the nature of business and industry type of component
firms. Eleven sectors are listed below. Each of these sectors is represented by an ETF
(exchange-traded fund), so that investors can gain investment exposure to individual
sectors. Ticker symbols for sectors are listed alongside sector names:

1. Communication services (XLC)
2. Consumer discretionary (XLY)
3. Consumer staples (XLP)
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4. Energy (XLE)
5. Financials (XLF)
6. Health care (XLV)
7. Industrials (XLI)
8. Materials (XLB)
9. Real estate (XLRE)

10. Technology (XLK)
11. Utilities (XLU)

Let us predict the daily return of each sector ETF using daily market returns
for the last ten days. The model we are using to predict sector return is shown in
Equation 4-8.

rsector(t) = β1rmkt(t − 1) + · · · + β10rmkt(t − 10)

Predict rsector(t) when rmkt(t) is known
(4-8)

Let us use a Gaussian kernel with σ set as the ten-day standard deviation of
market returns. Kernel regression is used to predict daily sector returns for a period
of around 4.5 years, from January 2000 to July 2024. Plots of predicted and actual
returns for each of the sectors are shown in Figures 4-2 to 4-12.

The root-mean-square error of predicted vs. actual returns is computed using
Equation 4-9 and is shown in Table 4-1.

RMSE =
√∑N

i=1

(
yi − ŷi

)2
N

ŷi = Predicted sector return

yi = Actual sector return

(4-9)

Adjusted R2 is computed using Equation 4-10. In this equation, N denotes the
number of observations, M = 10 because we use ten kernels, y is the actual return,
and ŷ is the predicted return.

Adj. R2 = 1 − N − 1

N − M − 1

∑N
i=1

(
yi − ŷi

)2
∑N

i=1 (yi − y)2

y =
∑N

i=1 yi

N

(4-10)

As seen from Table 4-1, the model does a good job of predicting daily returns.
Among all the sectors, highest adjusted R2 of 0.91 is observed for the technology
sector, while lowest adjusted R2 of 0.79 is observed for the energy sector. The root-
mean-square error of the energy sector is the largest at around 0.01.
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Figure 4-2. Predicted Daily Returns for Communication Services (XLC) vs. Actual Returns

We have used contemporaneous market return as one of the explanatory vari-
ables. In practice, we would need a model to predict this quantity because it is not
known on day t .

The code for fitting the kernel regression model is shown in Listing 4-1.

Listing 4-1. Using Kernel Regression to Predict Daily Sector Returns

1 import numpy as np
2 import pandas as pd
3 import matplotlib . pyplot as plt
4 import logging
5 import os
6

7 logging . basicConfig ( level =logging.DEBUG)
8

9
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Figure 4-3. Predicted Daily Returns for Consumer Discretionary (XLY) vs. Actual Returns

10 class KernelRegression :
11 def __init__ ( self , dirname, mktFile="SPY"):
12 self .dirname = dirname
13 self . sectors = { 'Communication services ' : 'XLC',
14 'Consumer discretionary ' : 'XLY',
15 'Consumer staples ' : 'XLP',
16 ' Energy' : 'XLE',
17 ' Financials ' : 'XLF',
18 ' Health care ' : 'XLV',
19 ' Industrials ' : 'XLI',
20 ' Materials ' : 'XLB',
21 'Real estate ' : 'XLRE',
22 ' Technology' : 'XLK',
23 ' Utilities ' : 'XLU'
24 }
25 self .mktFile = mktFile
26 self . logger = logging .getLogger( self . __class__ .__name__)
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Figure 4-4. Predicted Daily Returns for Consumer Staples (XLP) vs. Actual Returns

27 self .symbolToEtf = {v:k for k, v in self . sectors . items ()}
28 self . dfs = {}
29 self .mktDf = None
30 self . variance = None
31 self . readFiles ()
32 self .calculateEndogExogVars()
33

34 def readFiles ( self ) :
35 for symbol in self .symbolToEtf.keys() :
36 self . dfs [symbol] = pd.read_csv(os . path . join ( self .dirname, f"{symbol}.csv") ,

parse_dates=["Date"])
37 self .mktDf = pd.read_csv(os . path . join ( self .dirname, f"{ self .mktFile}.csv") ,

parse_dates=["Date"])
38

39 def calculateEndogExogVars( self ) :
40 dfs = [ self .mktDf] + list ( self . dfs . values () )
41 for df in dfs :
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Figure 4-5. Predicted Daily Returns for Energy (XLE) vs. Actual Returns

42 df . loc [:, " returns "] = 0
43 price = df . loc [:, "Close" ]. values
44 returns = price [1:] / price [0:−1] − 1
45 df . loc [0: df .shape[0]−2, " returns "] = returns
46

47 def calculateKernels ( self , x, xi ) :
48 multipliers = np. array ([1.0/ h for h in range( len (xi ) , 0, −1)])
49 kernels = ( multipliers / self . variance ) ∗ np.exp(−(((x − xi) / self . variance )

∗∗2) /2.0)
50 normalizedKernels = kernels / kernels .sum()
51 return normalizedKernels
52

53 def calculateRMSE(self , actual , predicted ) :
54 diff = ( actual − predicted )
55 return np. sqrt (np.sum(diff ∗∗ 2) / diff .shape [0])
56

57 def calculateAdjustedR2 ( self , actual , predicted ) :
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Figure 4-6. Predicted Daily Returns for Financials (XLF) vs. Actual Returns

58 diff = ( actual − predicted )
59 ssModel = np.sum(diff ∗∗ 2)
60 avg = np.mean(actual)
61 ssTotal = np.sum((actual − avg) ∗∗ 2)
62 n = actual .shape[0]
63 adjR2 = 1 − ((n−1)/(n−10−1)) ∗ ssModel/ssTotal
64 return adjR2
65

66 def plot ( self , actual , predicted , sector , begin , end):
67 fig , axs = plt . subplots (1, 1, figsize =(10, 10))
68 df = self . dfs [ sector ]
69 dates = df . loc [begin :end, "Date" ]. values
70 axs . plot ( dates , actual , label ="Actual")
71 axs . plot ( dates , predicted , label ="Predicted")
72 axs . grid ()
73 axs . legend ()
74 axs . set_xlabel ("Date")
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Figure 4-7. Predicted Daily Returns for Health Care (XLV) vs. Actual Returns

75 axs . set_ylabel ("Daily Return")
76 axs . set ( title =sector )
77 plt . savefig (os . path . join ( self .dirname, f"kernel_{ sector }. jpeg") ,
78 dpi=500)
79 plt .show()
80

81 def predict ( self , beginDate, endDate):
82 beginDate = pd. to_datetime (beginDate)
83 endDate = pd. to_datetime (endDate)
84 rmseList = []
85 sectorList = []
86 symbolList = []
87 adjR2List = []
88 for sector in self .symbolToEtf.keys() :
89 df = self . dfs [ sector ]
90 begin = df . loc [df .Date == beginDate, :]. index[0]
91 end = df . loc [df .Date == endDate, :]. index[0]
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Figure 4-8. Predicted Daily Returns for Industrials (XLI) vs. Actual Returns

92 beginMkt = self .mktDf.loc[ self .mktDf.Date == beginDate, :]. index[0]
93 actual = df . loc [begin :end, " returns " ]. values
94 predicted = np.zeros ( actual .shape [0], dtype=np. float32 )
95 for j in range(begin , end+1, 1) :
96 beginIdx = beginMkt + j − begin
97 mktRet = self .mktDf.loc[beginIdx , " returns "]
98 self . variance = np. std ( self .mktDf.loc[beginIdx−10:beginIdx, " returns " ].

values )
99 prevMktReturns = self .mktDf.loc[beginIdx−10:beginIdx, " returns " ]. values

100 prevSectorReturns = df . loc [ j − 10:j , " returns " ]. values
101 kernels = self . calculateKernels (mktRet, prevMktReturns)
102 predicted [ j−begin] = np.dot( prevSectorReturns , kernels )
103

104 rmse = self .calculateRMSE(actual , predicted )
105 adjr2 = self . calculateAdjustedR2 ( actual , predicted )
106 self . plot ( actual , predicted , sector , begin , end)
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Figure 4-9. Predicted Daily Returns for Materials (XLB) vs. Actual Returns

107 self . logger . info ("RMSE for sector %s: %f, adj R^2: %f", sector , rmse, adjr2
)

108 rmseList .append(rmse)
109 sectorList .append( self .symbolToEtf[sector ])
110 symbolList .append( sector )
111 adjR2List .append(adjr2 )
112

113 df = pd.DataFrame({"Sector": sectorList ,
114 "Symbol": symbolList ,
115 "RMSE": rmseList,
116 "Adj. R2": adjR2List})
117 self . logger . info (df)
118

119

120 if __name__ == "__main__":
121 dirname = r"C:\prog\cygwin\home\samit_000\RLPy\data_merged\sectors"
122 kernelReg = KernelRegression(dirname)
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Figure 4-10. Predicted Daily Returns for Real Estate (XLRE) vs. Actual Returns

123 beginDate = "2020−01−02"
124 endDate = "2024−07−12"
125 kernelReg. predict (beginDate, endDate)

Code Explanation
Let us do a code walk-through to explain the salient features of the code:

1. The code begins with instantiating an object of class KernelRegression, passing
the directory name containing data files as an argument. The constructor (inside
method __init__) has one additional argument with a default value:

• mktFile: Name of file containing S&P 500 end-of-day prices
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Figure 4-11. Predicted Daily Returns for Technology (XLK) vs. Actual Returns

2. Inside the constructor, data files are read as pandas dataframes. One data file for
each sector and one file for S&P 500 prices is read. This happens inside method
readFiles.

3. Endogenous and exogenous variables are calculated inside method calculateEn-
dogExogVars. The endogenous variable is a one-day return, calculated using
Equation 4-11.

ysector(t) = Psector(t)

Psector(t − 1)
− 1 (4-11)
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Figure 4-12. Predicted Daily Returns for Utilities (XLU) vs. Actual Returns

Exogenous variables are ten lagged daily returns, calculated using Equa-
tion 4-12.

xi,mkt(t) = Pmkt(t − i)

Pmkt(t − i − 1)
− 1

i ∈ (1, 2, · · · , 10)

(4-12)

4. After this, the predict method is called with begin date (January 2, 2000) and end
date (July 12, 2024) as arguments.

5. Note that kernel regression does not need a model fitting step. We may
nevertheless choose to tune some hyper-parameters specific to the kernel in the
training phase. For the radial basis function (RBF) kernel, the standard deviation
is a hyper-parameter. This is set to the standard deviation of ten-day returns for
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Table 4-1. Kernel regression for predicting daily sector returns

Sector Symbol RMSE Adj. R2

0 Communication services XLC 0.005306 0.885886

1 Consumer discretionary XLY 0.005345 0.896089

2 Consumer staples XLP 0.004090 0.861334

3 Energy XLE 0.010848 0.791136

4 Financials XLF 0.005855 0.882100

5 Health care XLV 0.004194 0.874688

6 Industrials XLI 0.004840 0.895615

7 Materials XLB 0.005450 0.876916

8 Real estate XLRE 0.006115 0.858806

9 Technology XLK 0.005154 0.914948

10 Utilities XLU 0.006254 0.828313

each day we predict a return. Hence, the choice of RBF kernel obviates the need
to train the model.

6. Inside the predict method, the code steps through each of the 11 sectors. For
each sector, it computes the begin and end rows corresponding to beginDate and
endDate arguments passed to this method.

7. For each day in the prediction period, i.e., from begin date to end date, it does
the following steps:

• It computes the hyper-parameter for the RBF kernel, h, for each day in the
forecast as the standard deviation of daily returns for S&P 500 for the last ten
days.

• It obtains the S&P 500 return on the prediction day, rmkt(t), and for ten
previous days, rmkt(t − 1), rmkt(t − 2), . . . , rmkt(t − 10).

• It computes the ten kernels for each day. It scales the kernels harmonically.
This is because, intuitively, we would expect the last day’s observation to
have a greater impact on prediction than the value ten days ago. The kernel is
shown in Equation 4-13.

K̃(i, j) = 1

i

1

h
exp

(
− (rmkt(t − i) − rmkt(t − j))2

2h2

)

K(i, j) = K̃(i, j)∑10
l=1 K̃(i, l)

for j ∈ (1, 2, · · · , 10)

(4-13)
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• Sector return is predicted using kernel regression and kernels computed
earlier, as shown in Equation 4-14.

ˆrsector(t) =
10∑

j=1

rsector(t − j)K(t, j) (4-14)

8. Adjusted R2 and RMS errors are computed for each sector.
9. It plots the adjusted vs. actual returns for each sector and reports statistics to

measure prediction accuracy.



5Dynamic Regime SwitchingModels

Regression models we have seen so far involve an equation describing a relationship
between endogenous (dependent) and exogenous (independent) variables with
coefficients or weights that remain constant. A natural extension of the model
involves cases where the structural form of relationship between endogenous and
exogenous variables remains the same, but coefficients and error term variance
change depending upon the state of some variable. The variable that determines
the regime could be latent, i.e., not observed explicitly, or an observable variable.
Dynamic regime switching models compute the probability of a particular regime
manifesting itself when an observation is recorded. For simplicity, it is customary
to use the Markov model for the regime switching process. This assumption implies
that the probability of occurrence of a regime is dependent only upon the prior
period’s regime and other observable variables. For this reason, models analyzed in
this chapter will belong to the class of Markov dynamic regime switching models.

Dynamic regime switching models use a set of modeling equations based
on manifestation of a particular regime. The individual equations share a set
of exogenous variables but have different coefficients for those variables. The
error terms of individual equations may have different variances to account for
heteroskedasticity across regimes. However, their correlation with each other is zero.
Simplifications of regime switching models involve making simplifying assump-
tions such as restricting the individual equations to share common coefficients for
certain exogenous variables or restrictions of common variance of error term across
regimes. The model is estimated using the maximum likelihood method.

5.1 Model Formulation

Let us formulate the model mathematically. Let us denote the number of regimes
by N and each individual regime by i. This implies there are N distinct governing
equations between dependent and independent variables. Let each equation have k
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exogenous (explanatory) variables, β1,i , β2,i , · · · , βk,i , with a constant β0,i . This
is shown in Equation 5-1. Linear regime switching models, such as the one shown
in Equation 5-1, have linear coefficients with no cross product or powers different
from unity involving the coefficients. Let εi denote the error term in the equation
corresponding to regime i.

y = β0,i + β1,ix1 + β2,ix2 + · · · + βk,ixk + εi

i ∈ {1, 2, · · · , N}

P (s(t)) =

⎡
⎢⎢⎣

p1,1 p1,2 · · · p1,N

p2,1 p2,2 · · · p2,N

· · ·
pN,1 pN,2 · · · pN,N

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Ps(t−1)=1

Ps(t−1)=2

· · ·
Ps(t−1)=N

⎤
⎥⎥⎦

N∑
i=1

pj,i = 1∀j

pj,i ≥ 0 ∀i and ∀j

εi ∼ N(0, σ 2
i )

Variance(εi) = σ 2
i

Covariance(εi, εj ) = 0

(5-1)

Equation 5-1 is the most general formulation of a linear, first-order Markov
dynamic regime switching model with constant state transition probabilities. The
correlation between error terms of different regimes is assumed to be zero. This
assumption is essential to establish the independence of equation between dependent
and independent variables across regimes conditional on the Markov assumption.
Model parameters in Equation 5-1 are the model coefficients β0,i , β1,i , · · · , βk,i

for i ∈ {1, 2, · · · , N}, error variances σ 2
i , regime transition probabilities pj,i , and

initial regime probabilities P(s(0) = i), subject to the constraint
∑N

i=1 pj,i = 1
for all regimes j . Regime transition probability pj,i denotes the probability of
transitioning from regime i to regime j in the next time step. They are estimated
using the maximum likelihood method. Let us look at the method of computing the
parameters in the next section.

5.2 Model Estimation UsingMaximum Likelihood

In order to estimate model parameters using the maximum likelihood method, we
must write the probability of observing a set of observations under the assumption
that the model is true. In a regime switching model, each regime has a probability
of manifesting itself at a given time step. If we have T observations of exogenous
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and endogenous variables, we can think of time going from t = 1, 2, · · · , T . At
time step t , the probability of manifestation of regime i is P(s(t) = i). According
to the Markov assumption, this is determined by the regime transition probabilities
pi,j and the regime probability at previous time step t − 1. Accordingly, probability
P(s(t) = i) can be written as

∑N
j=1 P(s(t) = i|s(t − 1) = j)P (s(t − 1) = j).

Using matrix multiplications and iterating the time steps backward toward the initial
observation at t = 0, we can write the probability of manifestation of regime i,
P(s(t) = i), at time t using Equation 5-2.

P (s(t)) =

⎡
⎢⎢⎣

p1,1 p1,2 · · · p1,N

p2,1 p2,2 · · · p2,N

· · ·
pN,1 pN,2 · · · pN,N

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Ps(t−1)=1|s(t−2)

Ps(t−1)=2|s(t−2)

· · ·
Ps(t−1)=N |s(t−2)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

p1,1 p1,2 · · · p1,N

p2,1 p2,2 · · · p2,N

· · ·
pN,1 pN,2 · · · pN,N

⎤
⎥⎥⎦

2 ⎡
⎢⎢⎣

Ps(t−2)=1|s(t−3)

Ps(t−2)=2|s(t−3)

· · ·
Ps(t−2)=N |s(t−3)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

p1,1 p1,2 · · · p1,N

p2,1 p2,2 · · · p2,N

· · ·
pN,1 pN,2 · · · pN,N

⎤
⎥⎥⎦

t ⎡
⎢⎢⎣

Ps(0)=1

Ps(0)=2

· · ·
Ps(0)=N

⎤
⎥⎥⎦

(5-2)

If regime i is applicable, the probability of observation at time step t is given by
Equation 5-3.

p (y(t), x(t)|s(t) = i) = 1√
2πσ 2

i

exp

(
−εi(t)

2

2σ 2
i

)

εi(t) = y(t) − β0,i + β1,ix1(t) + β2,ix2(t) + · · · + βk,ixk(t)

(5-3)

However, each regime has a probability of occurrence at time step t . Therefore,
the combined probability of observing the data y(t), x1(t), · · · , xk(t) at time step t

is given by Equation 5-4.

p (y(t), x(t)) =
N∑

i=1

p (y(t), x(t)|s(t) = i) P (s(t) = i) (5-4)

Finally, the combined probability of observing the dataset across all time steps
from t = 1 to T is given by Equation 5-5. It is customary to use log-likelihood
instead of raw likelihood. This alleviates the problem of numerical underflow in
computation when multiplying a large number of observations less than one. The
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transformation does not change the maximum of likelihood equation because the
logarithm is a monotonic function. Taking the logarithm of Equation 5-5, we get the
final expression for log-likelihood as shown in Equation 5-6.

P(data) =
T∏

t=1

p (y(t), x(t)) (5-5)

log (P (data)) =
T∑

t=1

log (p (y(t), x(t))) (5-6)

Substituting Equations 5-2, 5-3, and 5-4 in Equation 5-6 yields the final expres-
sion of log-likelihood of observing the data conditional on all model parameters.
In order to find the maximum of this expression with respect to model parameters,
we take the derivative and set it to zero as shown in Equation 5-7. The evaluation of
resulting equations must be done numerically. For example, one could use Newton’s
iterations shown in Equation 5-8, with derivatives evaluated numerically at the
current parameter values, in order to obtain updated parameter values. θ denotes
the vector of model parameters in Equation 5-8. θ(m) denotes the model parameters
at iteration m. We can observe that Equation 5-8 involves gradient ∇θ and inverse
of Hessian ∇θ∇θ matrices.

max
θ

log (P (data))

∇θ log (P (data)) = 0

≡ f (y, x, θ) = 0

(5-7)

θ(m) = θ(m − 1) − (∇θf (y, x, θ))−1 f (y, x, θ)

= θ(m − 1) − (∇θ∇θ log (P (data)))−1 ∇θ log (P (data))
(5-8)

Iterations begin with an initial guess for parameter values and proceed using
Newton’s iterations. Gradient and Hessian matrices can be calculated analytically
or estimated numerically.

In order to assess the goodness of fit, one uses an information criterion such
as the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC). The aforementioned information criteria are described in greater detail in
Subsection 2.8.4. Intuitively, the information criteria account for the goodness of fit
by including a term proportional to negative log-likelihood and penalize complex
models—those with greater number of free parameters—by including a term that
scales with the number of model parameters. Better models have lower information
criteria.
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5.3 Dynamic Transition Probabilities

We can generalize the model presented in the last section by equipping it with
changing transition probabilities. It may be recalled that in the last section, regime
transition probabilities conditional on prior state were constant because the tran-
sition matrix with probabilities pi,j in Equation 5-1 had constant values. Diebold
et al. (1993) proposed a generalization to the Markov dynamic regime switching
model to incorporate time-varying conditional regime transition probabilities. This
additional capability is apposite for applications where it is reasonable to believe
that conditional transition probability will depend on exogenous variables in
addition to current and prior regimes. It is instructive to note that in the last section,
conditional transition probability pi,j was dependent only on current regime i and
prior regime j .

Let us write the conditional transition probability matrix as shown in Equa-
tion 5-9. In the most general form, this method adds (k − 1) × N× additional free
parameters to the model where k − 1 is the number of exogenous variables in the
expression for transition probability and N is the number of regimes.

pi,j (t) = exp
(
γ0,i,j + γ1,i,j x1(t − 1) + · · · + γk−1,i,j xk−1(t − 1)

)

1 + exp
(
γ0,i,j + γ1,i,j x1(t − 1) + · · · + γk−1,i,j xk−1(t − 1)

)

pi,i(t) = 1 −
k−1∑
j=1

exp
(
γ0,i,j + γ1,i,j x1(t − 1) + · · · + γk−1,i,j xk−1(t − 1)

)

1 + exp
(
γ0,i,j + γ1,i,j x1(t − 1) + · · · + γk−1,i,j xk−1(t − 1)

)

(5-9)

5.4 EM Algorithm

The expectation-maximization, or EM, algorithm is widely used in machine learning
and statistics. It is used to obtain maximum likelihood estimates when the log-
likelihood expression involves latent (missing or unobserved) variables, and the
likelihood expression can only be evaluated after knowing the latent variables. This
necessitates estimating the latent variables first followed by maximization of the
resulting log-likelihood expression. Because estimation of latent variables requires
specification of model parameter values, the latent variables must be updated
once model parameters have been recalculated following maximization of the log-
likelihood expression. This yields an iterative process.

Let us formulate the EM algorithm in a generic fashion before applying it
to estimate the parameters of the dynamic Markov regime switching model with
varying transition probabilities. Let Z denote the latent variables of a model and β

denote the set of other model parameters, i.e., those not related to latent state. Latent
state Z may depend upon exogenous variables X and some additional parameters,
θ . To illustrate with an example, in the Markov dynamic regime switching model
with varying transition probabilities, pi,j are the latent variables. They depend upon
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exogenous variables X and parameters shown in Equation 5-9. Let p(y,X,Z, β)

denote the likelihood of observing the data (X, y), where y is the endogenous and
X is the exogenous variable. Z belongs to a continuum of values but could belong to
a discrete set of values in certain applications. Equation 5-10 shows the likelihood
expression. This expression can only be evaluated when we know the value of
latent state Z. The evaluation of the likelihood expression requires writing it as a
probabilistic sum of likelihood values for each realization of latent state, as shown
in Equation 5-10. The inequality in Equation 5-10 is a consequence of the concavity
of the logarithmic function and the application of Jensen’s inequality.

p(y,X,Z, β) =
∫

θ

p(y,X,Z, β|θ)p(θ)dθ

logp(y,X,Z, β) = log
∫

θ

p(y,X,Z, β|θ)p(θ)dθ

≥
∫

θ

log (p(y,X,Z, β|θ)) p(θ)dθ

=
∫

θ

log
(p(y,X,Z, β|θ)p(y,X, β|Z, θ0))

p(y,X, β|Z, θ0
p(θ)dθ

=
∫

θ

log (p(y,X,Z, β|θ)p(y,X, β|Z, θ0)) p(θ)dθ−
∫

θ

logp(y,X, β|Z, θ0)p(θ)dθ

= Q(θ, θ0) − E
[
logp(y,X, β|Z, θ0)

]

≥ Q(θ, θ0)

because E
[
logp(.)

]
< 0

(5-10)

Equation 5-10 implies that any θ that increases the right-hand side must also
increase the log-likelihood by virtue of the inequality. θ0 denotes an initial value.
Furthermore, quantity Q(θ, θ0) is tractable and can be computed. This principle
yields the iterative procedure followed by the EM algorithm outlined below:

1. Assume a value of parameters β and θ .
2. E step: Compute the latent states using θ and any required exogenous variable.
3. M step: Write the log-likelihood expression using the assumed value of θ .

Maximize this expression to get the value of parameters β and θ . Go back to
the previous step and recompute the latent states.

4. Iterations converge when there is little change in the values of β and θ . At this
point, we have the parameter values that give maximum likelihood.
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5.4.1 K-Means Algorithm

The K-means algorithm is perhaps one of the most simplistic applications of the
expectation-maximization (EM) algorithm. K-means is a clustering algorithm that
can operate in multidimensional space and produces hard, i.e., non-probabilistic,
assignment of points to one of the clusters.

Let us begin with a set of M points, represented as Xi, where X represents
multidimensional coordinates of a point i drawn from N -dimensional space. If we
suspect the data to be clustered and have an intuition about the number of clusters,
we can use the K-means algorithm to classify the points into one of those clusters.

The algorithm needs the number of clusters, K , as an input. We are trying
to minimize the function shown in Equation 5-11 with respect to the assignment
of points to clusters, I , and cluster centroids, C. In this formulation, I is the
latent variable and C are the model parameters. We cannot evaluate the objective
function without knowing the assignment of points to clusters, I . Assuming we have
cluster centroids fixed, we can show that the objective function in Equation 5-11 is
minimized by the assignment of points shown in Equation 5-12.

min
I,C

M∑
i=1

K∑
j=1

Ii,j

∥∥Xi − Cj
∥∥2

Ii,j = 1 if point i belongs to cluster j and 0 otherwise

(5-11)

Assign point i to cluster j

argmin
j

∥∥Xi − Cj
∥∥2 (5-12)

Once we know the assignment of points to clusters, I , the objective function in
Equation 5-11 is minimized when cluster centroids are set to the values shown in
Equation 5-13.

Cj =
∑M

i=1 Ii,jXi∑M
i=1 Ii,j

Ii,j = 1 if point i belongs to cluster j and 0 otherwise

(5-13)

The algorithm is sketched in pseudo-code 3.
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Algorithm 3 K-Means Algorithm
Require: A set of points with coordinates Xi and a number K representing the number of clusters

to define. Let us assume the points are drawn from N dimensional space.
1: Set threshold ε to a small value. This threshold is used to assess if the algorithm has converged.
2: Select K points representing the centroid (center) of each of the K clusters. This can be

assigned arbitrarily. Let us denote the coordinates of the jth cluster centroid by C(j).
3: for t = 1, 2, · · · , until convergence do
4: E-step: Assign each point to the cluster with the centroid closest to that point, as shown

in Equation 5-12. We could use the Euclidean distance to compute the distance as s =√∑N
i=1 (xi − c(j)i )

2 or use another definition more appropriate for the problem.
5: M-step: Recompute the cluster centroid coordinates using the points assigned to each

cluster as shown in Equation 5-13. This step changes the coordinates of cluster centroids.
6: Calculate the distance by which each cluster centroid moved. Repeat until the total change

falls below the threshold ε.
7: end for
8: Report the assignment of points to clusters and cluster centroids.

As an example, let us verify if high volatility of S&P 500 co-occurs with low
future returns. If high historical volatility precedes low subsequent returns, we
should expect the points to cluster. We can define the problem, including coordinates
of the points as shown below:

1. Let us consider daily end-of-day prices for the S&P 500 index from 2000 to 2024.
2. Daily returns are calculated using the equation r(t) = P(t)

P (t−1) − 1, where P(t)

represents the closing price on day t .
3. We calculate the trailing one-month volatility of daily returns using Equa-

tion 5-14. This equation uses 21 observations because there are approximately
21 trading days in a month.

4. Calculate the forward-looking five-day return using Equation 5-15.
5. Define the coordinates of a point as (one-month volatility, next five-day return).

A scatter plot of the points can be seen in Figure 5-1. In most problems, the points
will lie in a multidimensional space, and it may not be so convenient to visualize
them. But in this problem, the points belong to a two-dimensional space and are
amenable to visualization using a two-dimensional plot.

6. Using K = 4, assign the points to one of four clusters using the K-means
algorithm.

7. The assigned points are shown in Figure 5-2.

volatility(t) =
√∑21

i=1 (r(t − i) − r̄(t))2

21

r̄(t) =
∑21

i=1 r(t − i)

21

(5-14)
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Figure 5-1. Scatter Plot of Return-Volatility Observations of S&P 500 to Be Clustered into
Groups

R5 day(t) = P(t + 5)

P (t)
− 1 (5-15)

Figure 5-2 shows the points classified into one of four clusters. Cluster centers
are shown in black. From the plot, one can discern weak evidence for the ubiquitous
notion that increased volatility is associated with low subsequent returns. While it
is true that the cluster with the lowest return (cluster 3) has the highest volatility,
the cluster with the highest return (cluster 2) also has high volatility which is
only marginally lower than that of cluster 3. The remaining two clusters with low
volatilities have low subsequent returns.

The code for fitting the k-means model and plotting the results can be found in
Listing 5-1. The code uses the implementation of the K-means algorithm from the
scipy library.
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Figure 5-2. Clustered Return-Volatility Observations of S&P 500

Listing 5-1. Fitting Volatility-Return Observations of S&P 500 Using K-Means Algorithm

1 import numpy as np
2 import pandas as pd
3 import os
4 import logging
5 import matplotlib . pyplot as plt
6 from sklearn . cluster import KMeans
7 from matplotlib . pyplot import cm
8

9 logging . basicConfig ( level =logging.DEBUG)
10

11

12 class KMeansCluster:
13 PERIOD = 5
14 VOLAT_PERIOD = 21
15

16 def __init__ ( self , dirname, spy, K=4):
17 self . logger = logging .getLogger( self . __class__ .__name__)
18 filename = os . path . join (dirname, f"{spy}.csv")
19 self . df = pd.read_csv(filename , parse_dates=["Date"])
20 self . priceCol = "Close"
21 self .dirname = dirname
22 self . calculateVolatAndReturns ()
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23 self .model = KMeans(n_clusters=K)
24

25 def calculateVolatAndReturns ( self ) :
26 prices = self . df . loc [:, self . priceCol ]. values
27 returns1Day = prices [1:]/ prices [0:−1] − 1
28 returnPeriod = prices [ self .PERIOD:]/prices[0:−self .PERIOD] − 1
29

30 self . df . loc [:, " volat "] = 0
31 for i in range( self .VOLAT_PERIOD, self.df.shape[0], 1):
32 self . df . loc [ i , " volat "] = np. std (returns1Day[ i−self .VOLAT_PERIOD:i])
33

34 self . df . loc [:, " return "] = 0
35 self . df . loc [0: self . df .shape[0]−self .PERIOD−1, "return"] = returnPeriod
36

37 x = self . df . loc [ self .VOLAT_PERIOD:self.df.shape[0]−self.PERIOD−1, "volat"].
values

38 y = self . df . loc [ self .VOLAT_PERIOD:self.df.shape[0]−self.PERIOD−1, "return"].
values

39 plt . scatter (x, y)
40 plt . grid ()
41 plt . xlabel (" Volatility ")
42 plt . ylabel ("5−Day Return")
43 plt . title (" Scatterplot of Points ")
44 plt . savefig (os . path . join ( self .dirname, f" scatterplot_ { self . __class__ .__name__

}.jpeg"),
45 dpi=500)
46 plt .show()
47

48 def fit ( self ) :
49 x = self . df . loc [ self .VOLAT_PERIOD:self.df.shape[0] − self.PERIOD − 1, "volat"].

values
50 y = self . df . loc [ self .VOLAT_PERIOD:self.df.shape[0] − self.PERIOD − 1, "return"

].values
51 X = np.vstack ((x, y)) .T
52 self .model. fit (X)
53 labels = self .model. labels_
54 clusterCenters = self .model. cluster_centers_
55 colors = cm.rainbow(np. linspace (0, 1, self .model. n_clusters ) )
56

57 self . logger . info ("Cluster centeres ")
58 self . logger . info ( clusterCenters )
59

60 for i in range( self .model. n_clusters ) :
61 xlab = x[ labels == i ]
62 ylab = y[ labels == i ]
63 plt . scatter (xlab , ylab , c=colors [ i ], label =str ( i ) )
64 plt . scatter ([ clusterCenters [ i , 0]], [ clusterCenters [ i , 1]], c='black ' )
65

66 plt . grid ()
67 plt . xlabel (" Volatility ")
68 plt . ylabel ("5−Day Return")
69 plt . title (" Scatterplot of Classified Points ")
70 plt . legend ()
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71 plt . savefig (os . path . join ( self .dirname, f" scatterplot_classified_ { self . __class__
.__name__}.jpeg"),

72 dpi=500)
73 plt .show()
74

75

76

77 if __name__ == "__main__":
78 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
79 kmeans = KMeansCluster(dirname, "SPY")
80 kmeans. fit ()

Code Explanation
Let us walk through the code on using the K-means algorithm:

1. The code begins with instantiating an object of class KMeansCluster. The
constructor of this class takes the directory name containing data files and the
name of the file with S&P 500 end-of-day closing prices as arguments.

2. Inside the constructor (__init__ method), a comma-separated file containing
S&P 500 end-of-day prices is read using the pandas library.

3. Five-day returns and volatility of returns are calculated inside the method calcu-
lateVolatAndReturns. Five-day returns are calculated using r(t) = P(t+5)

P (t)
− 1.

The code defines a class-level variable PERIOD that controls the number of days
used in return calculation. Five trading days roughly correspond to one week.
The method also computes the volatility of one-day returns using 21 days as
the look-back period. 21 trading days roughly correspond to one month. Since
one-day returns are forward-looking, i.e., use the next day’s price, volatility for
day t uses one-day returns from t − 21 to t − 1, excluding day t . This avoids
in-sampling bias. This task being focused on clustering does not presuppose that
there is no in-sample bias. Volatility is computed using the std method from the
numpy library.

4. It constructs data points using volatility and five-day returns and fits them using
the K-means algorithm inside the fit method. Four clusters are used for this
exercise. This value is passed as a default argument to the constructor. The code
uses the fit method of the KMeans class available in the sklearn library.

5. The code prints the cluster centers and plots the classified points using a scatter
plot. K-means assigns a particular class to each point that can be obtained using
the labels_ attribute of the KMeans class.

5.4.2 GaussianMixture Model

The Gaussian mixture model can be conceptualized as a “soft” clustering algorithm
that assigns probabilities to each data point belonging to a Gaussian distribution
centered at a cluster centroid and having a cluster-specific variance. By assigning
probabilities to each data point belonging to a cluster, the Gaussian mixture model
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can handle cluster assignment of data points that are not linearly separable. The
K-means algorithm, being a distance-based method from a centroid, may fail to
converge for cases with non-linearly separable data. Generalizing the definition
of distance beyond the Euclidean distance does not cure this defect entirely. The
Gaussian mixture model is a generative model, i.e., it can generate new data points
following the same probability distribution learned by the model during training.

Let us formulate the model mathematically. Let us assume there are K clusters or
groups. The probability of observing a pointXi conditional on the point belonging to
cluster j is modeled using a Gaussian density function, as shown in Equation 5-16.
To gain an intuitive understanding of this equation, we observe that moving the point
Xi closer to cluster center μj increases the probability of observing the point under
the assumption that the point belongs to cluster j . Likewise, increasing the cluster
variance �j has the impact of increasing the probability of observing the point Xi,
everything else remaining the same. In the most general case,�j is anM×M matrix
where M is the number of dimensions of the point Xi.

P(Xi|j) = N
(
Xi − μj,�j

)

= 1√
(2π)M det

(
�j

) exp
(

−1

2

(
Xi − μj

)′
�−1

j

(
Xi − μj

)) (5-16)

The probability of selecting a cluster is also called prior probability and is
denoted by P(j). This could be an uninformative prior where we set probabilities of
selecting each cluster to be equal, i.e., 1

K
, or could be something more informative

that conveys our prior belief about selecting each cluster. This value denotes the
probability of selecting a cluster without using any information about the training
data. Being a probability, it must obey the constraint that

∑K
j=1 P(j) = 1. The

unconditional probability of observing a data point Xi can now be written as shown
in Equation 5-17.

P(Xi) =
K∑

j=1

P(Xi|j)P (j) (5-17)

Using Equation 5-17, we can write the combined probability of observing all
N data points as shown in Equation 5-21. Taking the logarithm, we obtain the log
probability of observing the data. In order to fit the model and evaluate μj and
�j for j ∈ (1, 2, · · · ,K), we maximize the log probability with respect to these
parameters. The probability expression in Equation 5-17 can only be evaluated once
we assume initial values for μj and �j. This yields the EM algorithm–based model
fitting approach for the Gaussian mixture model, as shown in pseudo-code 4.

For making an inference, i.e., classifying a new point among one of the clusters,
we select a cluster that maximizes the posterior probability using Bayes’ rule as
shown in Equation 5-20.
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Algorithm 4 Gaussian Mixture Model
Require: A set of N points with coordinates Xi and a number K representing the number of

clusters to define. Let us assume the points are drawn from M dimensional space.
1: Set threshold ε to a small value. This threshold is used to assess if the algorithm has converged.
2: Select K points representing the centroid (center) of each of the K clusters. This can be

assigned arbitrarily. Let us denote the coordinates of the jth cluster centroid by μj(0).
3: Select initial variance-covariance matrices for each of the j clusters, �j(0). For the first

iteration, this can be set to identity matrix.
4: Assume an initial prior probability for each cluster, P0(j).
5: for t = 1, 2, · · · , until convergence do
6: E-step: Evaluate the probability of each data point i belonging to a cluster j , P(Xi ∈ j),

using the values for μ, �, and P(j) from the previous iteration, as shown in Equation 5-18.

P(Xi|j) = N
(
Xi − μj(t − 1),�j(t − 1)

)

P(Xi ∈ j) = P(Xi|j)Pt−1(j)

P (Xi)

= P(Xi ∈ j |j)Pt−1(j)∑K
l=1 P(Xi ∈ l|l)Pt−1(l)

(5-18)

7: M-step: Update the values of μ, �, and P(j) using Equation 5-19 and values computed
in E-step. Superscript ′ indicates a transpose.

μj(t) =
∑N

i=1 P(Xi ∈ j)Xi∑N
i=1 P(Xi ∈ j)

�(t) =
∑N

i=1 P(Xi ∈ j)
(
Xi − μj(t − 1)

) (
Xi − μj(t − 1)

)′

∑N
i=1 P(Xi ∈ j)

Pt (j) =
∑N

i=1 P(Xi ∈ j)

N

(5-19)

8: Calculate the difference ‖μ(t) − μ(t − 1)‖2, ‖�(t) − �(t − 1)‖2, and∑K
j=1 (Pt (j) − Pt−1(j))2. Repeat until the total change falls below threshold ε.

9: end for
10: Report the cluster centers μ, variance matrices �, and cluster probabilities P(j).

P(Xi ∈ j |Xi) = P(Xi|Xi ∈ j)P (Xi ∈ j)

P (Xi)

= P(Xi|j)P (j)

P (Xi)

= P(Xi|j)P (j)∑K
k=1 P(Xi|k)P (k)

Select j that maximizes posterior probability P(Xi ∈ j |Xi)

(5-20)
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P(X) =
N∏

i=1

P(Xi)

logP(X) =
N∑

i=1

logP(Xi)

(5-21)

We can derive the equations for updating parameters in M-step by differentiating
the log-likelihood function with respect to the parameters.

Let us apply the Gaussian mixture model to cluster the trailing one-month
volatility and ensuing five-day return for S&P 500 examined in the last section. We
keep four clusters, with equal prior probability assigned to each cluster. For making
an inference on the training dataset, the model uses Equation 5-20. Clustered points
along with cluster centers (black dot) are shown in Figure 5-3. The Gaussian mixture
model gives a very different result as compared with K-means, identifying different
clusters. We can observe that points close to a cluster center are not necessarily
classified in that cluster. This is due to the fact that the Gaussian mixture model
can employ a non-diagonal variance-covariance matrix, with principal axis aligned
in directions not necessarily along the dimensions of the data space. The matrix is
learned during training.

Figure 5-3. Clustered Return-Volatility Observations of S&P 500
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The code for fitting a Gaussian mixture model can be found in Listing 5-2. We
use the GaussianMixture class from the sklearn library.

Listing 5-2. Fitting Gaussian Mixture Model to Volatility-Return Observations of S&P 500

1 import numpy as np
2 import pandas as pd
3 import os
4 import logging
5 import matplotlib . pyplot as plt
6 from sklearn .mixture import GaussianMixture
7 from matplotlib . pyplot import cm
8

9 logging . basicConfig ( level =logging.DEBUG)
10

11

12 class GaussianMixtureModel:
13 PERIOD = 5
14 VOLAT_PERIOD = 21
15

16 def __init__ ( self , dirname, spy, K=4):
17 self . logger = logging .getLogger( self . __class__ .__name__)
18 filename = os . path . join (dirname, f"{spy}.csv")
19 self . df = pd.read_csv(filename , parse_dates=["Date"])
20 self . priceCol = "Close"
21 self .dirname = dirname
22 self . calculateVolatAndReturns ()
23 self . nClusters = K
24 self .model = GaussianMixture(n_components=K, random_state=0)
25

26 def calculateVolatAndReturns ( self ) :
27 prices = self . df . loc [:, self . priceCol ]. values
28 returns1Day = prices [1:]/ prices [0:−1] − 1
29 returnPeriod = prices [ self .PERIOD:]/prices[0:−self .PERIOD] − 1
30

31 self . df . loc [:, " volat "] = 0
32 for i in range( self .VOLAT_PERIOD, self.df.shape[0], 1):
33 self . df . loc [ i , " volat "] = np. std (returns1Day[ i−self .VOLAT_PERIOD:i])
34

35 self . df . loc [:, " return "] = 0
36 self . df . loc [0: self . df .shape[0]−self .PERIOD−1, "return"] = returnPeriod
37

38 def fit ( self ) :
39 x = self . df . loc [ self .VOLAT_PERIOD:self.df.shape[0] − self.PERIOD − 1, "volat"].

values
40 y = self . df . loc [ self .VOLAT_PERIOD:self.df.shape[0] − self.PERIOD − 1, "return"

].values
41 X = np.vstack ((x, y)) .T
42 self .model. fit (X)
43 clusterCenters = self .model.means_
44 labels = self .model. predict (X)
45

46 colors = cm.rainbow(np. linspace (0, 1, self . nClusters ) )
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47

48 self . logger . info ("Cluster centeres ")
49 self . logger . info ( clusterCenters )
50

51 for i in range( self . nClusters ) :
52 xlab = x[ labels == i ]
53 ylab = y[ labels == i ]
54 plt . scatter (xlab , ylab , c=colors [ i ], label =str ( i ) )
55 plt . scatter ([ clusterCenters [ i , 0]], [ clusterCenters [ i , 1]], c='black ' )
56

57 plt . grid ()
58 plt . xlabel (" Volatility ")
59 plt . ylabel ("5−Day Return")
60 plt . title (" Scatterplot of Classified Points ")
61 plt . legend ()
62 plt . savefig (os . path . join ( self .dirname, f" scatterplot_classified_ { self . __class__

.__name__}.jpeg"),
63 dpi=500)
64 plt .show()
65

66

67

68 if __name__ == "__main__":
69 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
70 gmm = GaussianMixtureModel(dirname, "SPY")
71 gmm.fit ()

Code Explanation
A code walk-through is presented below:

1. An object of class GaussianMixtureModel is instantiated, with the constructor
receiving the directory name containing data files and the name of the file with
S&P 500 end-of-day closing prices as arguments.

2. Inside the constructor (__init__ method), a comma-separated file containing
S&P 500 end-of-day prices is read using the pandas library.

3. Five-day returns and volatility of returns are calculated inside the method calcu-
lateVolatAndReturns. Five-day returns are calculated using r(t) = P(t+5)

P (t)
− 1.

The code defines a class-level variable PERIOD that controls the number of days
used in return calculation. Five trading days roughly correspond to one week.
The method also computes the volatility of one-day returns using 21 days as
the look-back period. 21 trading days roughly correspond to one month. Since
one-day returns are forward-looking, i.e., use the next day’s price, volatility for
day t uses one-day returns from t − 21 to t − 1, excluding day t . This avoids
in-sampling bias. This task being focused on clustering does not presuppose that
there is no in-sample bias. Volatility is computed using the std method from the
numpy library.

4. It constructs data points using volatility and five-day returns and fits them using
the Gaussian mixture model inside the fit method. Four clusters are used for
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this exercise. This value is passed as a default argument to the constructor.
The code uses the fit method of the GaussianMixture class available in the
sklearn library. The constructor of theGaussianMixture class takes the number
of clusters to define and an optional random state which should be passed for
reproducibility of results. Random state is used as a seed in random number
generation used for picking the cluster centers for first iteration.

5. The code prints the cluster centers and plots the classified points using a scatter
plot. The Gaussian mixture model does not assign a particular class to each point,
it produces a probability of each point belonging to a cluster. The code uses the
predict method of the GaussianMixture class to predict the cluster to which
the points belong. This method assigns the cluster with the highest probability
among all clusters to contain a point. Class labels are produced as output by the
predict method.

6. Labeled points along with clusters are plotted on a scatter plot with color chosen
to indicate cluster membership.

5.5 Estimating Dynamic Transition Probabilities

After understanding the EM algorithm, we are in a position to apply it for obtaining
the time-varying transition probabilities in a Markov dynamic regime switching
model. Time-varying transition probabilities (TVTP) were assumed to belong to
the parametric family shown in Equation 5-9. This expression can be used at each
time step to obtain the unconditional probability of observing a state, as shown in
Equation 5-22. We assume initial values of parameters γ in Equation 5-9 in order to
calculate values of pi,j (t).

P (s(t)) =

⎡
⎢⎢⎣

p1,1(t) p1,2(t) · · · p1,N (t)

p2,1(t) p2,2(t) · · · p2,N (t)

· · ·
pN,1(t) pN,2(t) · · · pN,N(t)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Ps(t−1)=1|s(t−2)

Ps(t−1)=2|s(t−2)

· · ·
Ps(t−1)=N |s(t−2)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

p1,1(t) p1,2(t) · · · p1,N (t)

p2,1(t) p2,2(t) · · · p2,N (t)

· · ·
pN,1(t) pN,2(t) · · · pN,N(t)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

p1,1(t − 1) · · · p1,N (t − 1)
p2,1(t − 1) · · · p2,N (t − 1)

· · ·
pN,1(t − 1) · · · pN,N(t − 1)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Ps(t−2)=1|s(t−3)

Ps(t−2)=2|s(t−3)

· · ·
Ps(t−2)=N |s(t−3)

⎤
⎥⎥⎦

(5-22)
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Using the unconditional state probabilities at any given time t , we can write the
pseudo-code for fitting the parameters of the Markov dynamic regime switching
model with time-varying transition probabilities (TVTP) as shown in pseudo-code 5.

Algorithm 5 FittingMarkov Dynamic Regime SwitchingModel with Time-Varying
Transition Probabilities Using EM Algorithm
Require: Exogenous variables X, endogenous variables y, and number of regimes.
1: Set threshold ε to a small value. This threshold is used to assess if the algorithm has converged.
2: Assume initial values for parameters γ in the parametric expression for transition probabilities

(TVTP) in Equation 5-9.
3: for n = 1, 2, · · · , until convergence do
4: E-step: Calculate conditional transition probabilities (TVTP) using Equation 5-9 and

the value of parameters γ (t − 1) from the last iteration. Evaluate the unconditional state
probabilities at each time step t using Equation 5-22 and computed time-varying transition
probabilities (TVTP).

5: M-step: Using state probabilities found in E-step, write the maximum log-likelihood
function as was done for the case with constant state transition probabilities and find the
parameter values by maximizing the expression with respect to each parameter. Also, find the
updated values of parameters γ required in Equation 5-9 by performing a first-order expansion
around the values of γ from the previous iteration.

6: Calculate the sum of square difference in value of parameters from the last iteration. Repeat
until the total change falls below threshold ε.

7: end for
8: Use the fitted parameter values to make predictions.

5.6 Application

In this section, let us look at a few applications of Markov dynamic regime switching
models.

5.6.1 Taylor Rule

The Taylor rule is a cornerstone of monetary policy. It prescribes the level of short-
term interest rate, also known as federal funds rate in the United States, in relation
to inflation and unemployment for the conduct of stable monetary policy. Monetary
policy is stable if it sets short-term interest rates that foster actual inflation rate
equal to target inflation rate and GDP growth rate equal to the potential rate of
GDP growth. Potential GDP growth occurs when all capital and available manpower
is used for production of goods and services. This corresponds to a state of full
employment. American economist John B. Taylor proposed the rule in 1993 in
a paper titled “Discretion versus policy rules in practice.” The rule is stated in
Equation 5-23. β0, β1, and β2 are the model parameters. The term yt − ȳt represents
the output gap and refers to the amount of GDP growth below its full potential. In
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his original paper, Taylor argued that both β1 and β2 should be close to 0.5.

it = πt + β0 + β1
(
πt − π∗) + β2 (yt − ȳt )

it : Short-term interest rate

πt : Inflation rate

π∗ : Target rate of inflation
yt : GDP growth rate

ȳt : Natural GDP growth rate consistent with inflation at target rate

(5-23)

In the original paper, Taylor proposed setting the inflation target, π∗, to 2%. This
is also the level adopted by the Federal Reserve, so let us set the inflation target
to 2%. In practice, the output gap is computed by first estimating a natural GDP
growth trend and applying the trend over a period to obtain potential GDP growth.
The output gap is then calculated as the difference between the current quarter’s
GDP growth and potential GDP growth. There are several methods to compute the
natural GDP growth trend, such as smoothing or applying the HP filter. The Federal
Reserve calculates this trend and uses it to compute the output gap. Let us use the
values for the output gap published by the Federal Reserve Bank of St. Louis under
its FRED data [20].

Using data from 1980 to 2024, let us first estimate the model coefficients using
OLS. Inflation is measured using the GDP price deflator published by the Bureau
of Economic Analysis (BEA). The short-term interest rate in the Taylor rule is
the effective federal funds rate (EFFR) for the United States. This is the overnight
rate charged by depositary institutions for lending funds to each other. The trading
desk at the Federal Reserve Bank of New York ensures that the prevailing effective
federal funds rate is close to the target set by the Federal Reserve using market
transactions of borrowing or lending short-term funds to depositary institutions.
This data is available in the FRED database made available by the Federal Reserve
Bank of St. Louis. All data variables except EFFR are available at quarterly
frequency. EFFR is available daily; therefore, we take the average of all EFFR
observations in a quarter to get quarterly EFFR.

Listing 5-3 provides the summary statistics of fitting the OLS model using data
from 1980 to 2024. The model has a low adjusted R2 0f 0.001. The Durbin-Watson
statistic of 0.205 indicates the presence of serial correlation in residuals.

Listing 5-3. Fitting Taylor Rule Using OLS Model

1 OLS Regression Results
2 ================================================================
3 Dep. Variable : y R−squared: 0.012
4 Model: OLS Adj. R−squared: 0.001
5 Method: Least Squares F− statistic : 1.097
6 Date: Sun, 14 Jul 2024 Prob (F− statistic ) :0.336
7 Time: 00:10:05 Log−Likelihood: 357.53
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8 No. Observations : 177 AIC: −709.1
9 Df Residuals : 174 BIC: −699.5

10 Df Model: 2
11 Covariance Type: nonrobust
12 ==============================================================
13 coef std err t P>| t | [0.025 0.975]
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 const 0.0160 0.003 5.331 0.000 0.010 0.022
16 x1 0.1607 0.122 1.314 0.190 −0.081 0.402
17 x2 0.0801 0.121 0.664 0.507 −0.158 0.318
18 ===============================================================
19 Omnibus: 11.897 Durbin−Watson: 0.205
20 Prob(Omnibus): 0.003 Jarque−Bera (JB):14.209
21 Skew: −0.485 Prob(JB): 0.000821
22 Kurtosis : 3.992 Cond. No. 50.4
23 ===============================================================
24

25 Notes:
26 [1] Standard Errors assume that the covariance matrix of the errors is correctly

specified .

Let us fit a Markov dynamic regime switching model to the same data. Let
us use three regimes with different coefficients, intercept, and error variances in
the regimes. Summary statistics from fitting the model are shown in Listing 5-4.
Statistics show that AIC of the fitted model using the Markov dynamic regime
switching model (−1046.7) is better than that obtained by using OLS (−709.1).
Lower AIC value indicates a model is better. Certain error intervals in regime 3
in Listing 5-4 appear as nan (not a number) because the variance is too small, at
6.096e − 11, indicating a high degree of confidence in calculated coefficients. From
the results, it can be observed that regime 2 has coefficient β2 = 0.5962 – close to
Taylor’s recommendation of 0.5. This is the coefficient for the output gap exogenous
variable. It can be concluded that the traditional form of the Taylor rule is more apt
as an accurate predictor of EFFR in moderate real interest rate regimes (regime 2).

We can interpret the three regimes as low, medium, and high EFFR regimes.
Computed transition probabilities are shown in Listing 5-4. Regime occurrence
probabilities are plotted in Figure 5-4. As observed in Figure 5-4, from 1981 to
1986, we were in a period of high interest rates when the Fed under Paul Volcker
aggressively hiked interest rates to fight inflation. From 1990 to 2002, we were in
a period of medium interest rates, with the Federal Reserve setting effective federal
funds rate a little above prevailing inflation. After the Great Financial Crisis of
2008–2009 up until 2022, we were in a period of low interest rates. Only after
2022, we transitioned to a regime of high interest rates with the Federal Reserve
raising rates to fight persistent inflation. However, the interpretation of regimes may
be more nuanced. This is because the regime switching model assigning regime
probabilities also defines them in relation to the levels of exogenous and endogenous
variables. The exogenous variables are plotted in Figure 5-5.
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Listing 5-4. Fitting Taylor Rule Using OLS Model

1 Markov Switching Model Results
2 ==================================================================
3 Dep. Variable : y No. Observations : 177
4 Model: MarkovRegression Log Likelihood 541.329
5 Date: Sun, 14 Jul 2024 AIC −1046.658
6 Time: 00:10:08 BIC −989.487
7 Sample: 0 HQIC −1023.472
8

9 Covariance Type: approx
10 Regime 0 parameters
11 ==================================================================
12 coef std err z P>|z | [0.025 0.975]
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 const −0.0060 0.001 −4.856 0.000 −0.008 −0.004
15 x1 −1.1565 0.045 −25.557 0.000 −1.245 −1.068
16 x2 0.3295 0.046 7.135 0.000 0.239 0.420
17 sigma2 3.456e−05 6.27e−06 5.509 0.000 2.23e−05 4.69e−05
18 Regime 1 parameters
19 ==================================================================
20 coef std err z P>|z | [0.025 0.975]
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 const 0.0320 0.002 17.914 0.000 0.029 0.036
23 x1 0.2627 0.074 3.544 0.000 0.117 0.408
24 x2 0.5962 0.103 5.807 0.000 0.395 0.797
25 sigma2 0.0001 2.3e−05 5.426 0.000 7.96e−05 0.000
26 Regime 2 parameters
27 ===================================================================
28 coef std err z P>|z | [0.025 0.975]
29 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 const 0.0299 0.004 6.772 0.000 0.021 0.039
31 x1 0.3774 0.211 1.786 0.074 −0.037 0.791
32 x2 −0.5413 0.143 −3.789 0.000 −0.821 −0.261
33 sigma2 0.0004 9.46e−05 4.231 0.000 0.000 0.001
34 Regime transition parameters
35 ===================================================================
36 coef std err z P>|z | [0.025 0.975]
37 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 p[0−>0] 0.9674 0.020 47.535 0.000 0.927 1.007
39 p[1−>0] 0.0126 0.014 0.897 0.370 −0.015 0.040
40 p[2−>0] 0.0172 0.021 0.832 0.405 −0.023 0.058
41 p[0−>1] 6.096e−11 nan nan nan nan nan
42 p[1−>1] 0.9728 0.022 44.294 0.000 0.930 1.016
43 p[2−>1] 0.0420 0.034 1.244 0.213 −0.024 0.108
44 ===================================================================
45

46 Warnings:
47 [1] Covariance matrix calculated using numerical (complex−step) differentiation .
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Figure 5-4. Regime Probabilities for Fitting Taylor Rule Using Dynamic Regime Switching
Model

Figure 5-5. Exogenous and Endogenous Variable Plots
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Figure 5-6. Comparison of Taylor Rule Fitted Using OLS and Dynamic Regime Switching
Model Against EFFR Set by the Federal Reserve

Finally, let us compare the predicted values of EFFR using OLS and Markov
dynamic regime switching models to fit the data to the Taylor rule and compare it
against the actual value of the effective federal funds rate (EFFR) set by the Federal
Reserve. Because the Federal Reserve takes into account a range of economic
variables and considers the forecast of inflation and unemployment derived from
models and expert’s projections in addition to the Taylor rule, this fit will not be
exact. As seen from the plot in Figure 5-6, the degree of fit is much closer using the
Markov dynamic regime switching model.

The code for fitting the Taylor rule using OLS and Markov dynamic regime
switching models is presented in Listing 5-5.

Listing 5-5. Fitting Taylor Rule Using OLS and Markov Dynamic Regime Switching Model

1 import numpy as np
2 import pandas as pd
3 import statsmodels . api as sm
4 import logging
5 import os
6 import matplotlib . pyplot as plt
7

8 logging . basicConfig ( level =logging.DEBUG)
9

10

11 class TaylorRule:
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12 def __init__ ( self , dirname, effrFile , inflationFile , outputGapFile , inflationTarget
=0.02,

13 beginDate="1980−01−01", trainTestSplit =0.9) :
14 self .dirname = dirname
15 self . trainTestSplit = trainTestSplit
16 self . logger = logging .getLogger( self . __class__ .__name__)
17 effr = pd.read_csv(os . path . join (dirname, f"{ effrFile }.csv") , parse_dates =["

DATE"])
18 effr . rename(columns={"DFF": "intRate"}, inplace=True)
19 self . convertColToFloat ( effr , " intRate " , divideBy=100)
20 effr = self . convertToQuarterly ( effr , [" intRate " ])
21 self .beginDate = pd. to_datetime (beginDate)
22 self .endog = " intRate "
23

24 inflation = pd.read_csv(os . path . join (dirname, f"{ inflationFile }.csv") ,
parse_dates=["DATE"])

25 inflation .rename(columns={ inflationFile : "pi"}, inplace=True)
26 self . convertColToFloat ( inflation , "pi" , divideBy=100)
27 inflation . loc [:, "pi_m_target"] = inflation . loc [:, "pi"] − inflationTarget
28

29 df = pd.merge( effr , inflation , on=["DATE"], how="inner")
30

31 outputGap = pd.read_csv(os . path . join (dirname, f"{outputGapFile}.csv") ,
parse_dates=["DATE"])

32 outputGap.rename(columns={"GDPC1_GDPPOT": "output_gap"}, inplace=True)
33 self . convertColToFloat (outputGap, "output_gap" , divideBy=100)
34 df = pd.merge(df, outputGap, on=["DATE"], how="inner")
35

36 df = df . loc [df .DATE >= self.beginDate, :]. reset_index (drop=True)
37

38 self .exog = ["pi_m_target" , "output_gap"]
39 self . df = df
40

41 def convertColToFloat ( self , df , col , divideBy=1.0) :
42 if (df . loc [:, col ] == " . ") .sum() > 0:
43 df .drop(np.where(df. loc [:, col ] == " . ") [0], inplace=True)
44 df . loc [:, col ] = df . loc [:, col ]. astype (np. float64 ) / divideBy
45 df . reset_index (drop=True, inplace=True)
46

47 def convertToQuarterly ( self , df , cols ) :
48 df . loc [:, ' quarter ' ] = (( df .DATE.dt.month.values − 1) // 3)
49 df . loc [:, ' year ' ] = df .DATE.dt.year
50 ypart = df [[ ' year ' , ' quarter ' ] + cols ]
51 ypart = ypart .groupby([ ' year ' , ' quarter ' ]) .mean(). reset_index (drop=False)
52 ydate = df [[ "DATE", "year", " quarter " ]]. groupby(["year" , " quarter " ]) . first () .

reset_index (drop=False)
53 ydate . loc [:, "DATE"] = ydate.DATE + pd.offsets .MonthEnd(0) + pd. offsets .

MonthBegin(−1)
54 df = pd.merge(ydate, ypart , on=["year" , " quarter " ], how="inner")
55 df .drop(columns=["year", " quarter " ], inplace=True)
56 return df
57

58 def trainData ( self ) :
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59 ntrain = int ( self . df .shape[0] ∗ self . trainTestSplit )
60 y = self . df . loc [0: ntrain , self .endog]. values − self . df . loc [0: ntrain , "pi" ].

values
61 X = self . df . loc [: ntrain , self .exog]. values
62 return y, X
63

64 def fitOLS( self ) :
65 y, X = self . trainData ()
66 X = sm.add_constant(X, has_constant="add")
67 self .olsModel = sm.OLS(y, X)
68 self .olsModel = self .olsModel. fit ()
69 self . logger . info ( self .olsModel.summary())
70 summaryfile = os . path . join ( self .dirname, self . __class__ .__name__ + "_ols. txt ")
71 with open(summaryfile, 'w') as fh :
72 fh . write ( self .olsModel.summary().as_text () )
73

74 def plotTrainingFit ( self ) :
75 y, X = self . trainData ()
76 fig , ax = plt . subplots (1, figsize =(10, 7))
77 ntrain = int ( self . df .shape[0] ∗ self . trainTestSplit )
78 date = self . df . loc [0: ntrain , "DATE"].values
79 ax. plot (date , y + self . df . loc [0: ntrain , "pi" ]. values , label ="Actual")
80 yPred = self .olsModel. fittedvalues
81 ax. plot (date , yPred + self . df . loc [0: ntrain , "pi" ]. values , label ="OLS Predicted

")
82 yPred = self .markovModel. fittedvalues
83 ax. plot (date , yPred + self . df . loc [0: ntrain , "pi" ]. values , label ="Regime Switch

Predicted")
84 ax. legend ()
85 ax. set ( title =" Effective Federal Funds Rate (EFFR)")
86 ax. grid ()
87 fig . tight_layout ()
88 plt . savefig (os . path . join ( self .dirname, f" effr_ { self . __class__ .__name__}.jpeg"),
89 dpi=500)
90 plt .show()
91

92 def fitRegimeSwitch( self ) :
93 y, X = self . trainData ()
94 ntrain = int ( self . df .shape[0] ∗ self . trainTestSplit )
95 date = self . df . loc [0: ntrain , "DATE"].values
96 np.random.seed(1024)
97 self .markovModel = sm.tsa.MarkovRegression(endog=y, k_regimes=3, trend='c ' ,

exog=X,
98 switching_trend=True,
99 switching_exog=True,

100 switching_variance =True)
101 self .markovModel = self.markovModel.fit ()
102

103 self . logger . info ( self .markovModel.summary())
104 summaryfile = os . path . join ( self .dirname, self . __class__ .__name__ + "

_regimeSwitch.txt")
105 with open(summaryfile, 'w') as fh :
106 fh . write ( self .markovModel.summary().as_text())
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107

108 fig , axes = plt . subplots (3, figsize =(10, 7))
109

110 ax = axes[0]
111 ax. plot (date , self .markovModel. filtered_marginal_probabilities [:, 0])
112 ax. set ( title =" Probability of regime 1 (Low EFFR)")
113 ax. grid ()
114

115 ax = axes[1]
116 ax. plot (date , self .markovModel. filtered_marginal_probabilities [:, 1])
117 ax. set ( title =" Probability of regime 2 (Medium EFFR)")
118 ax. grid ()
119

120 ax = axes[2]
121 ax. plot (date , self .markovModel. filtered_marginal_probabilities [:, 2])
122 ax. set ( title =" Probability of regime 3 (High EFFR)")
123 ax. grid ()
124

125 fig . tight_layout ()
126 plt . savefig (os . path . join ( self .dirname, f"regime_prob_{self . __class__ .__name__

}.jpeg"),
127 dpi=500)
128 plt .show()
129

130 def fit ( self ) :
131 self .fitOLS()
132 self .fitRegimeSwitch ()
133 self . plotTrainingFit ()
134

135

136 if __name__ == "__main__":
137 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
138 trule = TaylorRule(dirname, "DFF", "A191RI1Q225SBEA", "fredgraph_OutputGap",

trainTestSplit=1.0)
139 trule . fit ()

To aid explanation of the code in Listing 5-5, let us look at pseudo-code 6
elucidating the code logic.

Code Explanation
A code walk-through is presented below:

1. An object of class TaylorRule is instantiated with five arguments passed to the
constructor. The first argument is the directory name containing data files. The
next argument indicates the name of the file containing effective federal funds
rate (EFFR). The following argument indicates the name of the inflation file,
and the one after that contains the output gap data. The data files are all comma
separated, with identical name of column containing the data as the file name.
For example, file A191RI1Q225SBEA contains the inflation data reported by
BEA, with inflation data falling under column with nameA191RI1Q225SBEA.
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Algorithm 6 Using OLS and Markov Dynamic Regime Switching Model to Fit
Taylor Rule
Require: Files containing quarterly data for inflation and output gap. File containing daily data

for effective federal funds rate (EFFR).
1: Read the files containing data for inflation and output gap.
2: Convert the data columns to floating-point data type and join the two tables.
3: Read the file containing EFFR data and convert the EFFR data column to floating-point data

type.
4: Convert daily EFFR to quarterly EFFR by taking an average of daily EFFR values falling in a

quarter.
5: Define the endogenous variable as it − πt . This quantity is known as the real interest rate,

obtained after subtracting inflation from interest rate (EFFR).
6: Fit the OLSmodel using the redefined endogenous variable and exogenous variables (πt − π∗)

and output gap (yt − ȳt ) after adding an intercept and print summary statistics.
7: Fit the Markov dynamic regime switching model using three regimes, regime switching

variance, coefficients, and intercept. Print summary statistics.
8: Plot the output from fitted models and compare against actual EFFR rate. Because OLS and

Markov dynamic regime switching models predict real interest rate, add inflation to obtain the
predicted (fitted) for EFFR.

The final argument is the training-testing split. In this exercise, we use the entire
dataset for training and set this argument to 1.

2. The code reads the effective federal funds file and converts the data column to
floating-point type. It calls the method convertToQuarterly to convert EFFR
data to quarterly frequency. This method extracts the year and quarter for each
date and groups the data by year and quarter, taking the average of EFFR values
falling in a year-quarter group.

3. The inflation file is read next, and the inflation target is subtracted from inflation
to obtain inflation above the target. As explained earlier, an inflation target of
2% is used. Inflation data is already present at quarterly frequency.

4. The inflation dataframe is joined with a dataframe containing EFFR data on
quarterly dates.

5. The output gap is read, and after changing column names, it is joined with the
dataframe from the last step.

6. EFFR is specified as the endogenous variable, with excess inflation above the
target and the output gap serving as exogenous variables.

7. The OLS model is fitted to predict EFFR using the abovementioned exogenous
variables and an intercept.

8. The Markov regime switching model is fit to the data. TheMarkovRegression
class from the statsmodels library is used for the purpose. This API does
not require prepending a column of ones to exogenous variables for inclusion
of intercept. It includes an intercept if argument trend=c is provided to
the constructor of class MarkovRegression. c represents the constant trend.
In addition to endogenous and exogenous variables, the constructor of the
MarkovRegression class is provided with arguments indicating the number
of regimes k_regimes, argument switching_trend indicating if intercept coef-
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ficients show change in different regimes, argument switching_exog indicating
if coefficients of exogenous variables should change in different regimes, and
argument switching_variance that indicates if error term covariance changes in
different regimes. These last three arguments are supplied with a value of True.

9. The Markov model is fitted and summary statistics printed.
10. Marginal probabilities indicating the probability of occurrence of a regime are

plotted using the filtered_marginal_probabilities API of the MarkovRegres-
sion class.

11. Predicted EFFR values on the training dataset are plotted against actual EFFR
values and compared against the predictions of the OLS model.

The inflation used in fitting the Taylor rule is the seasonally adjusted GDP
implicit price deflator published by the US Bureau of Economic Analysis (BEA).
This measure of inflation is different from PCE (personal consumption expenditure)
in that it includes volatile food and energy prices. PCE is the Federal Reserve’s
preferred inflation gauge. However, for fitting the Taylor rule, one must account for
a representative basket of goods and services that include price volatile goods.

Time-Varying Transition Probabilities
We can employ time-varying transition probabilities (TVTP) in theMarkov dynamic
regime switching model for fitting the Taylor rule to see its impact on the closeness
of fit. In order to use TVTP, we need to provide exogenous variables used in the
definition of transition probabilities in Equation 5-9. Let us use the same set of
exogenous variables used in the Taylor rule. The statsmodels library expects the
addition of a row of ones to the matrix containing exogenous variables for transition
probabilities in order to include a constant term. Accordingly, we add this column
of ones. The code snippet in Listing 5-6 derives from the TaylorRule class used in
the code from the last section and modifies the model to use TVTP.

Listing 5-6. Fitting Taylor Rule Using OLS and Markov Dynamic Regime Switching Model with
Time-Varying Transition Probabilities

1 import numpy as np
2 import pandas as pd
3 import statsmodels . api as sm
4 import logging
5 import os
6 import matplotlib . pyplot as plt
7 from src .TaylorRule import TaylorRule
8

9 logging . basicConfig ( level =logging.DEBUG)
10

11

12 class TaylorRuleTVTP(TaylorRule):
13 def fitRegimeSwitch( self ) :
14 y, X = self . trainData ()
15 ntrain = int ( self . df .shape[0] ∗ self . trainTestSplit )
16 date = self . df . loc [0: ntrain , "DATE"].values
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17 np.random.seed(1024)
18 XWithConst = sm.add_constant(X, has_constant="add")
19 self .markovModel = sm.tsa.MarkovRegression(endog=y, k_regimes=3, trend='c ' ,

exog=X,
20 exog_tvtp=XWithConst,
21 switching_trend=True,
22 switching_exog=True,
23 switching_variance =True)
24 self .markovModel = self.markovModel.fit ()
25

26 self . logger . info ( self .markovModel.summary())
27 summaryfile = os . path . join ( self .dirname, self . __class__ .__name__ + "

_regimeSwitch.txt")
28 with open(summaryfile, 'w') as fh :
29 fh . write ( self .markovModel.summary().as_text())
30

31 fig , axes = plt . subplots (3, figsize =(10, 7))
32

33 ax = axes[0]
34 ax. plot (date , self .markovModel. filtered_marginal_probabilities [:, 0])
35 ax. set ( title =" Probability of regime 1 (Low EFFR)")
36 ax. grid ()
37

38 ax = axes[1]
39 ax. plot (date , self .markovModel. filtered_marginal_probabilities [:, 1])
40 ax. set ( title =" Probability of regime 2 (Medium EFFR)")
41 ax. grid ()
42

43 ax = axes[2]
44 ax. plot (date , self .markovModel. filtered_marginal_probabilities [:, 2])
45 ax. set ( title =" Probability of regime 3 (High EFFR)")
46 ax. grid ()
47

48 fig . tight_layout ()
49 plt . savefig (os . path . join ( self .dirname, f"regime_prob_{self . __class__ .__name__

}.jpeg"),
50 dpi=500)
51 plt .show()
52

53 fig , axes = plt . subplots (3, figsize =(10, 7))
54

55 ax = axes[0]
56 ax. plot (date , y + self . df . loc [0: ntrain , "pi" ]. values )
57 ax. set ( title ="EFFR")
58 ax. grid ()
59

60 ax = axes[1]
61 ax. plot (date , X[:, 0])
62 ax. set ( title =" Inflation Above Target (2%)")
63 ax. grid ()
64

65 ax = axes[2]
66 ax. plot (date , X[:, 1])
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67 ax. set ( title ="Output Gap")
68 ax. grid ()
69

70 fig . tight_layout ()
71 plt . savefig (os . path . join ( self .dirname, f"regime_vars_{ self . __class__ .__name__

}.jpeg"),
72 dpi=500)
73 plt .show()
74

75

76 if __name__ == "__main__":
77 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
78 trule = TaylorRuleTVTP(dirname, "DFF", "A191RI1Q225SBEA", "fredgraph_OutputGap"

, trainTestSplit=1.0)
79 trule . fit ()

Using this change, we observe a small improvement in the closeness of fit, as
evidenced by the reduction of AIC to −1054.69 from −1046.658. The fitted curve
is shown in Figure 5-7 and is only marginally better than Figure 5-6.

Figure 5-7. Comparison of Taylor Rule Fitted Using OLS and Dynamic Regime Switching
Model with TVTP Against EFFR Set by the Federal Reserve
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Code Explanation
A code walk-through is presented below:

1. As before, the code begins with instantiating an object of class Taylor-
RuleTVTP, providing as arguments the directory name containing data files,
followed by the name of files containing EFFR rates, inflation rate, and output
gap. The final argument specifies the train-test split as 1.

2. The code proceeds by reading the files, processing them, and creating the
endogenous and exogenous variables. This part of the code is identical to the
code presented earlier without time-varying transition probabilities.

3. The point of departure from the code in the last section comes where class
MarkovRegression from library statsmodels is instantiated. The constructor
of this class is provided with an argument exog_tvtp specifying the exogenous
variables to use in the expression for time-varying transition probabilities shown
in Equation 5-9. This matrix also needs a column of ones for the inclusion
of intercept term in the equation for transition probability in Equation 5-9.
Accordingly, we add a column of ones using the API add_constant.

4. All the remaining code remains the same as the one presented in the last section.

5.6.2 Phillips Curve

The Phillips curve describes the relationship between unemployment rate and
inflation. This relationship is important because the Federal Reserve has a dual
mandate to promote price stability while fostering maximum employment. It may
seem reasonable to think that higher employment leads to higher price pressure by
boosting consumption of goods and services, thereby increasing inflation. Higher
employment may also cause wage pressures because employers seeking workers in
a shrinking pool of available workers are forced to offer higher wages. This increases
the cost of production of goods and services for firms, who in turn raise the price
of their goods and services. The Phillips curve was proposed by economist A. W.
Phillips in 1958. While the relationship was prominently manifest in economic data
prior to 1970, it has become muddled afterward. This can be seen from a plot of
unemployment rate and inflation observed in the United States after 1950, as shown
in Figures 5-8 to 5-11. These plots show unemployment vs. inflation on a scatter
plot for each month from 1959 to 2024. To aid discernment, the year range is split
into 20-year brackets:

1. From 1959 to 1979, higher unemployment was often associated with low
inflation, though there were many outliers where high inflation and high unem-
ployment coexisted (Figure 5-8). Higher unemployment depressed consumption,
causing inflation to fall during this period.

2. From 1979 to 1999, higher inflation co-occurred with high unemployment as
the Federal Reserve began raising interest rates aggressively to tame runaway
inflation, even in the face of rising unemployment (Figure 5-9).
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Figure 5-8. Unemployment vs. Inflation from 1959 to 1979

3. From 1999 to 2019, the relationship between inflation and unemployment had
flattened. Inflation remaining low in the midst of both high and low unemploy-
ment (Figure 5-10).

4. From 2019 to 2024, inflation began rising, but unemployment barely budged
from its low value (Figure 5-11).

The equation describing the augmented Phillips curve is shown in Equation 5-24.

π(t) = Et [π(t + 1)] + β
(
u(t) − un(t)

) + ε(t)

β < 0
(5-24)

In Equation 5-24, π(t) is the inflation, and Et [π(t + 1)] is the expected value of
the subsequent-period inflation calculated at time t, or forward-looking inflation.
Inflation is measured using the PCE (personal consumption expenditure) index
which excludes volatile food and energy prices from the CPI index. PCE is the
Federal Reserve Board’s preferred gauge to measure inflation in US economy.
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Figure 5-9. Unemployment vs. Inflation from 1979 to 1999

u is the unemployment rate, and un is the non-accelerating inflation rate of
unemployment, or NAIRU. This is the unemployment rate that would prevail
if inflation is at its expected level. Or stated another way, it is the equilibrium
unemployment level from all natural sources that will not contribute to inflation.
ε(t) denotes the idiosyncratic error.

Equation 5-24 has been generalized to include lagged inflation in order to account
for the fact that certain producers of goods may lack the foresight to predict expected
inflation and may use last period’s inflation as a substitute. The modified equation
is called the new Keynesian hybrid Phillips curve and is shown in Equation 5-25.

π(t) = β1Et [π(t + 1)] + β2π(t − 1) + β3
(
u(t) − un(t)

) + ε(t)

β3 < 0
(5-25)

As before, we are going to use OLS and Markov dynamic regime switching
models to fit the new Keynesian hybrid Phillips curve to the data. In practice,
economists use GMM (generalized method of moments) or DSGE (dynamic



5.6 Application 145

Figure 5-10. Unemployment vs. Inflation from 1999 to 2019

stochastic general equilibrium model) to fit this equation to econometric data. GMM
will be covered in a subsequent chapter in greater detail. Let us use the difference
between yields on ten-year nominal US government bonds and ten-year TIPS as a
substitute for expected inflation, E [π(t + 1)]. This rate is available from the FRED
economic series database made available by the Federal Reserve Bank of St. Louis
under the name “10-year breakeven inflation rate.” This rate is forward-looking
because it is derived from yields of government bonds which change according to
the investor’s expectation of forward-looking inflation. Data for NAIRU, un(t), is
also available from the FRED database as non-cyclical rate of unemployment, or
NROU [21].

Inflation data (PCE index) and unemployment rate are available at a monthly
frequency. Inflation expectation data is available daily, while NAIRU is available at
a quarterly frequency. We select monthly data frequency and assign a NAIRU equal
to that quarter’s value for the three months falling in a quarter. Inflation expectation
data is averaged monthly using all days falling in a month to obtain a monthly value.
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Figure 5-11. Unemployment vs. Inflation from 2019 to 2024

Summary statistics of fitting the new Keynesian Phillips curve using the OLS
model are shown in Listing 5-7. There is no intercept in Equation 5-25, as seen
from the statistics. The “uncentered” qualifier used with R2 statistic reflects this
fact. Adjusted R2 of 0.986 indicates a good model fit to the data. β2 of 0.9358
indicates that the prior period’s inflation plays an important role in determining
the next period’s inflation. β3 has a negative value which aligns with traditional
economic theory that predicts unemployment above the natural level will reduce
inflation. However, the dependence is weak, as seen from the low value of β3 of
−0.0153 and from the fact that this coefficient is not statistically significant at 90%
significance level. It is, however, significant at 80% level, as seen from the P-value
for a one-sided test.
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Listing 5-7. Fitting New Keynesian Hybrid Phillips Curve Using OLS Model

1 OLS Regression Results
2 =====================================================================

3 Dep. Variable : y R−squared (uncentered) : 0.986
4 Model: OLS Adj. R−squared (uncentered) :0.986
5 Method: Least Squares F− statistic : 5896.
6 Date: Sun, 14 Jul 2024 Prob (F− statistic ) : 1.90e−234
7 Time: 00:59:37 Log−Likelihood: 1112.4
8 No. Observations : 257 AIC: −2219.
9 Df Residuals : 254 BIC: −2208.

10 Df Model: 3
11 Covariance Type: nonrobust
12 =====================================================================

13 coef std err t P>| t | [0.025 0.975]
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 x1 0.0866 0.023 3.719 0.000 0.041 0.132
16 x2 0.9358 0.017 55.424 0.000 0.903 0.969
17 x3 −0.0153 0.011 −1.419 0.157 −0.036 0.006
18 =====================================================================

19 Omnibus: 31.650 Durbin−Watson: 1.027
20 Prob(Omnibus): 0.000 Jarque−Bera (JB): 179.327
21 Skew: −0.153 Prob(JB): 1.15e−39
22 Kurtosis : 7.081 Cond. No. 4.92
23 =====================================================================

24

25 Notes:
26 [1] R2 is computed without centering (uncentered) since the model does not contain a

constant .
27 [2] Standard Errors assume that the covariance matrix of the errors is correctly

specified .

Statistics for fitting the new Keynesian hybrid Phillips curve using the Markov
dynamic regime switching model are shown in Listing 5-8. The regime switching
model uses three regimes with no intercept and regime switching coefficients and
variance of error term. Regime occurrence probabilities are shown in Figure 5-13
and value of exogenous variables is illustrated in Figure 5-12. From Figure 5-13, it is
apparent that regime 3 has the highest probability of manifestation over the period.
Regime 1 materialized in 2015, while regime 2 had a high probability of occurrence
for a short period during the Great Financial Crisis of 2008–2009. From the plot of
exogenous variables shown in Figure 5-12, we can ascribe economic meaning to the
definition of regimes. Regime 1 seems to occur when inflation expectations are well
anchored at 2% target articulated by the Federal Reserve and lagged inflation falls
to a value close to 0% with unemployment close to its natural level. Under these
circumstances, a decline in lagged inflation gives rise to expectations for reversion
to the target value of 2%, as seen from the negative value for β2 of −0.1456 in the
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Listing 5-8. Fitting New Keynesian Hybrid Phillips Curve Using Regime Switching Model

1 Markov Switching Model Results
2 ====================================================================
3 Dep. Variable : y No. Observations : 257
4 Model: MarkovRegression Log Likelihood 1141.929
5 Date: Sun, 14 Jul 2024 AIC −2247.857
6 Time: 14:21:20 BIC −2183.974
7 Sample: 0 HQIC −2222.166
8

9 Covariance Type: approx
10 Regime 0 parameters
11 ====================================================================
12 coef std err z P>|z | [0.025 0.975]
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 x1 0.1474 0.021 7.010 0.000 0.106 0.189
15 x2 −0.1456 0.011 −13.405 0.000 −0.167 −0.124
16 x3 −0.0803 0.042 −1.931 0.053 −0.162 0.001
17 sigma2 3.371e−07 nan nan nan nan nan
18 Regime 1 parameters
19 ====================================================================
20 coef std err z P>|z | [0.025 0.975]
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 x1 0.3390 0.031 10.939 0.000 0.278 0.400
23 x2 0.3657 0.024 15.502 0.000 0.319 0.412
24 x3 −0.1323 0.013 −10.400 0.000 −0.157 −0.107
25 sigma2 3.714e−07 nan nan nan nan nan
26 Regime 2 parameters
27 ====================================================================
28 coef std err z P>|z | [0.025 0.975]
29 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 x1 0.0885 0.022 3.947 0.000 0.045 0.132
31 x2 0.9402 0.016 58.624 0.000 0.909 0.972
32 x3 −0.0120 0.010 −1.196 0.232 −0.032 0.008
33 sigma2 8.419e−06 7.72e−07 10.903 0.000 6.91e−06 9.93e−06
34 Regime transition parameters
35 ====================================================================
36 coef std err z P>|z | [0.025 0.975]
37 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 p[0−>0] 0.8860 0.016 57.034 0.000 0.856 0.916
39 p[1−>0] 0.1458 0.048 3.058 0.002 0.052 0.239
40 p[2−>0] 6.844e−12 nan nan nan nan nan
41 p[0−>1] 4.094e−72 nan nan nan nan nan
42 p[1−>1] 0.5603 0.016 35.995 0.000 0.530 0.591
43 p[2−>1] 0.0137 0.008 1.747 0.081 −0.002 0.029
44 ====================================================================
45

46 Warnings:
47 [1] Covariance matrix calculated using numerical (complex−step) differentiation .
48 [2] Covariance matrix is singular or near−singular , with condition number 1.14e+18.

Standard errors may be unstable .
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Figure 5-12. Exogenous Variable Plots

Figure 5-13. Regime Probabilities for Fitting Phillips Curve Using Dynamic Regime Switching
Model
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first regime. Regime 2 occurred for a short time during the financial crisis of 2008–
2009 and seems to be associated with lagged deflation, i.e., lagged inflation below
0%, and unemployment sharply higher than the natural level of unemployment. In
this regime, both expected inflation and lagged inflation are important determinants
for the current period’s inflation. This is seen from the values of β1 and β2 of
0.339 and 0.3657, respectively. The coefficient for excess unemployment above the
natural level is highly negative, at −0.1323. This indicates that any additional rise
in unemployment would trigger a sharp reduction in inflation, as is typical during
severe economic downturns. Finally, regime 3 seems to occur most of the time, and
its coefficients are close to the ones obtained using OLS. In all three regimes, we
observe β3 to be negative, consistent with economic theory.

We observe that the Markov dynamic regime switching model produces a slightly
better fit compared with OLS for the new Keynesian hybrid Phillips curve as seen
from the AIC value of −2247.857 in Listing 5-8 which is marginally better than
−2219 obtained using OLS (Figure 5-7). This is because regime 3 dominates over
other regimes for most of the period considered in model fitting, and OLS is just
as versatile in modeling single regime equations as dynamic regime switching
model. Figure 5-14 compares the predicted inflation using the two methods against
actual inflation. The plot confirms the close fit to the data. Only brief periods
around 2008–2009 and 2015–2016 show the Markov dynamic regime switching

Figure 5-14. Comparison of New Keynesian Hybrid Phillips Curve Fitted Using OLS and
Dynamic Regime Switching Model
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model performing better than OLS. As described earlier, these are the periods when
regimes 2 and 3, respectively, are likely to occur (Figure 5-13).

The code for fitting the Phillips curve to data is shown in Listing 5-9 and
explained in pseudo-code 7.

Listing 5-9. Fitting New Keynesian Hybrid Phillips Curve Using OLS and Markov Dynamic
Regime Switching Models

1 import numpy as np
2 import pandas as pd
3 import statsmodels . api as sm
4 import logging
5 import os
6 import matplotlib . pyplot as plt
7

8 logging . basicConfig ( level =logging.DEBUG)
9

10

11 class PhillipsCurve :
12 def __init__ ( self , dirname, inflationFile , expectedInflFile , unemploymentFile,

naturalUnempFile,
13 trainTestSplit =0.9) :
14 self .dirname = dirname
15 self . trainTestSplit = trainTestSplit
16 self . logger = logging .getLogger( self . __class__ .__name__)
17

18 inflation = pd.read_csv(os . path . join (dirname, f"{ inflationFile }.csv") ,
parse_dates=["DATE"])

19 self . convertColToFloat ( inflation , inflationFile )
20 pceValues = inflation . loc [:, inflationFile ]. values
21 inflationVal = pceValues [12:] / pceValues[0:−12] − 1
22 inflation . loc [:, "pi"] = 0
23 inflation . loc [12:, "pi"] = inflationVal
24 inflation . loc [:, "lagged_pi"] = 0
25 inflation . loc [13:, "lagged_pi"] = inflationVal [0:−1]
26 self .endog = "pi"
27

28 expInflation = pd.read_csv(os . path . join (dirname, f"{ expectedInflFile }.csv") ,
parse_dates=["DATE"])

29 expInflation .rename(columns={expectedInflFile : "E_pi"}, inplace=True)
30 self . convertColToFloat ( expInflation , "E_pi", divideBy=100)
31 expInflation = self .convertToMonthly( expInflation , ["E_pi"])
32 df = pd.merge( inflation , expInflation , on=["DATE"], how="inner")
33

34 unemp = pd.read_csv(os . path . join (dirname, f"{unemploymentFile}.csv"),
parse_dates=["DATE"])

35 unemp.rename(columns={unemploymentFile: "unemp"}, inplace=True)
36 self . convertColToFloat (unemp, "unemp", divideBy=100)
37 df = pd.merge(df, unemp, on=["DATE"], how="inner")
38

39 nairu = pd.read_csv(os . path . join (dirname, f"{naturalUnempFile}.csv") ,
parse_dates=["DATE"])

40 nairu .rename(columns={naturalUnempFile: "nairu"}, inplace=True)
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41 self . convertColToFloat ( nairu , "nairu" , divideBy=100)
42 self .addYearAndQuarterColumn(df)
43 self .addYearAndQuarterColumn(nairu)
44 nairu .drop(columns=["DATE"], inplace=True)
45 df = pd.merge(df, nairu , on=["year" , " quarter " ], how="inner")
46 df . loc [:, "u_m_un"] = df. loc [:, "unemp"] − df.loc [:, "nairu"]
47

48 self .exog = ["E_pi", "lagged_pi" , "u_m_un"]
49 self . df = df
50

51 def convertColToFloat ( self , df , col , divideBy=1.0) :
52 if (df . loc [:, col ] == " . ") .sum() > 0:
53 df .drop(np.where(df. loc [:, col ] == " . ") [0], inplace=True)
54 df . loc [:, col ] = df . loc [:, col ]. astype (np. float64 ) / divideBy
55 df . reset_index (drop=True, inplace=True)
56

57 def convertToMonthly( self , df , cols ) :
58 df . loc [:, ' year ' ] = df .DATE.dt.year
59 df . loc [:, 'month'] = df .DATE.dt.month.values
60 ypart = df [[ ' year ' , 'month'] + cols ]
61 ypart = ypart .groupby([ ' year ' , 'month' ]) .mean(). reset_index (drop=False)
62 ydate = df [[ "DATE", "year", "month"]].groupby(["year" , "month"]). first () .

reset_index (drop=False)
63 ydate . loc [:, "DATE"] = ydate.DATE + pd.offsets .MonthEnd(0) + pd. offsets .

MonthBegin(−1)
64 df = pd.merge(ydate, ypart , on=["year" , "month"], how="inner")
65 df .drop(columns=["year", "month"], inplace=True)
66 return df
67

68 def addYearAndQuarterColumn(self, df) :
69 df . loc [:, ' quarter ' ] = (( df .DATE.dt.month.values − 1) // 3)
70 df . loc [:, ' year ' ] = df .DATE.dt.year
71

72 def trainData ( self ) :
73 ntrain = int ( self . df .shape[0] ∗ self . trainTestSplit )
74 y = self . df . loc [0: ntrain , self .endog]. values
75 X = self . df . loc [: ntrain , self .exog]. values
76 return y, X
77

78 def fitOLS( self ) :
79 y, X = self . trainData ()
80 self .olsModel = sm.OLS(y, X)
81 self .olsModel = self .olsModel. fit ()
82 self . logger . info ( self .olsModel.summary())
83 summaryfile = os . path . join ( self .dirname, self . __class__ .__name__ + "_ols. txt ")
84 with open(summaryfile, 'w') as fh :
85 fh . write ( self .olsModel.summary().as_text () )
86

87 def plotTrainingFit ( self ) :
88 y, X = self . trainData ()
89 fig , ax = plt . subplots (1, figsize =(10, 7))
90 ntrain = int ( self . df .shape[0] ∗ self . trainTestSplit )
91 date = self . df . loc [0: ntrain , "DATE"].values
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92 ax. plot (date , y, label ="Actual")
93 yPred = self .olsModel. fittedvalues
94 ax. plot (date , yPred, label ="OLS Predicted")
95 yPred = self .markovModel. fittedvalues
96 ax. plot (date , yPred, label ="Regime Switch Predicted")
97 ax. legend ()
98 ax. set ( title =" Inflation Predicted Using New Keynesian Hybrid Phillips Curve")
99 ax. grid ()

100 fig . tight_layout ()
101 plt . savefig (os . path . join ( self .dirname, f" infl_nkpc_{ self . __class__ .__name__}.

jpeg"),
102 dpi=500)
103 plt .show()
104

105 def fitRegimeSwitch( self ) :
106 y, X = self . trainData ()
107 ntrain = int ( self . df .shape[0] ∗ self . trainTestSplit )
108 date = self . df . loc [0: ntrain , "DATE"].values
109 np.random.seed(1024)
110 self .markovModel = sm.tsa.MarkovRegression(endog=y, k_regimes=3, trend='n ' ,

exog=X,
111 switching_trend=True,
112 switching_exog=True,
113 switching_variance =True)
114 self .markovModel = self.markovModel.fit ()
115

116 self . logger . info ( self .markovModel.summary())
117 summaryfile = os . path . join ( self .dirname, self . __class__ .__name__ + "

_regimeSwitch.txt")
118 with open(summaryfile, 'w') as fh :
119 fh . write ( self .markovModel.summary().as_text())
120

121 fig , axes = plt . subplots (3, figsize =(10, 7))
122

123 ax = axes[0]
124 ax. plot (date , self .markovModel. filtered_marginal_probabilities [:, 0])
125 ax. set ( title =" Probability of regime 1")
126 ax. grid ()
127

128 ax = axes[1]
129 ax. plot (date , self .markovModel. filtered_marginal_probabilities [:, 1])
130 ax. set ( title =" Probability of regime 2")
131 ax. grid ()
132

133 ax = axes[2]
134 ax. plot (date , self .markovModel. filtered_marginal_probabilities [:, 2])
135 ax. set ( title =" Probability of regime 3")
136 ax. grid ()
137

138 fig . tight_layout ()
139 plt . savefig (os . path . join ( self .dirname, f"regime_prob_{self . __class__ .__name__

}.jpeg"),
140 dpi=500)
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141 plt .show()
142

143 fig , axes = plt . subplots (3, figsize =(10, 7))
144

145 ax = axes[0]
146 ax. plot (date , X[:, 0])
147 ax. set ( title ="Expected Inflation ")
148 ax. grid ()
149

150 ax = axes[1]
151 ax. plot (date , X[:, 1])
152 ax. set ( title ="Lagged Inflation ")
153 ax. grid ()
154

155 ax = axes[2]
156 ax. plot (date , X[:, 2])
157 ax. set ( title ="Unemployment Above Natural Level (NAIRU)")
158 ax. grid ()
159

160 fig . tight_layout ()
161 plt . savefig (os . path . join ( self .dirname, f"regime_vars_{ self . __class__ .__name__

}.jpeg"),
162 dpi=500)
163 plt .show()
164

165 def fit ( self ) :
166 self .fitOLS()
167 self .fitRegimeSwitch ()
168 self . plotTrainingFit ()
169

170

171 if __name__ == "__main__":
172 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
173 nkpc_pc = PhillipsCurve (dirname, "PCEPI", "T10YIE", "UNRATE", "NROU",

trainTestSplit=1.0)
174 nkpc_pc. fit ()

Code Explanation
A code walk-through is presented below:

1. The code begins with instantiating an object of class PhillipsCurve. The
constructor of this class is provided with the directory name containing data
files, files containing the PCE price index, ten-year break-even inflation rate,
unemployment rate, and natural rate of unemployment, also known as non-
cyclical rate of unemployment. Because we are interested in fitting the Phillips
curve to data rather than in making predictions, we use the entire dataset for
model fitting (training) by specifying training-testing data split to be 1. Data for
ten-year break-even inflation rate is used to determine expected inflation rate.
All data files are in comma-separated format.
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Algorithm 7 Using OLS and Markov Dynamic Regime Switching Model to Fit
New Keynesian Hybrid Phillips Curve
Require: Files containing monthly data for the PCE index and unemployment level, daily data for

break-even inflation rate and quarterly data for natural unemployment level.
1: Read the files containing data for the PCE index, unemployment and natural unemployment

level.
2: Convert the data columns to floating-point data type.
3: Calculate monthly inflation as π(t) = PCE(t)

PCE(t−1) − 1.
4: Lag the calculated inflation by one month to obtain lagged inflation, π(t − 1).
5: Read the file containing break-even inflation rate (expected annual inflation). This value is

obtained by subtracting the yield on par-value ten-year bond and ten-year TIPS.
6: Compute an average of daily expected inflation values to arrive at a monthly value.
7: Read the file containing natural rate of unemployment (NAIRU).
8: Assign the same quarterly value of natural unemployment rate to the three months falling in a

quarter.
9: Join all the dataframes to obtain all exogenous variables needed for fitting the model in

monthly frequency.
10: Fit the OLS model without using an intercept.
11: Fit the Markov dynamic regime switching model using three regimes, regime switching

variance and coefficients but no intercept. Print summary statistics.
12: Plot the output from fitted models and compare against actual inflation rate.

2. The file containing the PCE price index is read and processed first, with the
column containing the PCE index converted to floating-point decimal. Inflation
rate is derived from this index by calculating the annual percentage change in
index as π(t) = PCE(t)

PCE(t−12) − 1.
3. Lagged inflation is calculated by shifting the data for inflation calculated in the

last step backward by one month. This implies πlagged(t) = π(t − 1).
4. The file containing ten-year break-even inflation rate is read next. After con-

verting the column containing the break-even rate to a floating-point decimal,
it is converted to a monthly frequency from a daily frequency by calculating an
average of all observations falling in a month. This processing occurs inside the
method convertToMonthly.

5. The dataframe containing expected inflation is merged with the one containing
inflation and lagged inflation on the date column. The resulting dataframe has
data at monthly frequency.

6. The file containing unemployment rate is read, and after conversion to floating-
point decimal, it is merged with the last dataframe. Unemployment data already
has monthly frequency, and no further processing is required.

7. The data file containing natural rate of unemployment (or non-cyclical rate of
unemployment) is read, and the data is converted to a floating-point decimal
format. This data is at a quarterly frequency.

8. Columns containing year and quarter corresponding to each date are added to
the dataframe containing non-cyclical rate of unemployment and the previous
dataframe using the method addYearAndQuarterColumn.
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9. The two dataframes are merged on year and quarter columns. The first
dataframe had monthly frequency, while the dataframe containing non-cyclical
rate of unemployment has quarterly frequency. The resulting dataframe has
monthly frequency, with all months falling in a quarter having the same value
of non-cyclical rate of unemployment for that quarter.

10. An additional column with the name u_m_un is computed as the difference
between unemployment rate and non-cyclical rate of unemployment.

11. With all exogenous variables and endogenous variable computed, the code
proceeds to fit the Phillips curve using OLS inside the method fitOLS.
Summary statistics from model fitting are printed.

12. The Markov dynamic regime switching model is used to fit the Phillips
curve inside the method fitRegimeSwitch. The MarkovRegression class from
the statsmodels library is used for the purpose. This API does not require
prepending a column of ones to exogenous variables for inclusion of intercept. It
includes an intercept if argument trend=c is provided to the constructor of class
MarkovRegression. c represents the constant trend. In addition to endogenous
and exogenous variables, the constructor of theMarkovRegression class is pro-
vided with arguments indicating the number of regimes k_regimes, argument
switching_trend indicating if intercept coefficients show change in different
regimes, argument switching_exog indicating if coefficients of exogenous vari-
ables should change in different regimes, and argument switching_variance
that indicates if error term covariance changes in different regimes. These last
three arguments are supplied with a value of True.

13. The Markov model is fitted and summary statistics printed.
14. Marginal probabilities indicating the probability of occurrence of a regime are

plotted using the filtered_marginal_probabilities API of the MarkovRegres-
sion class.

15. Predicted inflation rate on the training dataset is plotted against actual inflation
rate and compared against the predictions of the OLS model.
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Bayesian statistics and frequentist statistics are the two pillars of quantitative
probabilistic modeling. The frequentist approach is perhaps the easier of the two
to grasp intuitively. Founded on the count-based modeling approach, it is premised
on the hypothesis that the frequency of an event has a constant value that remains
the same. The true parameter value is unique but unknown, and the experimental
observations attempt to ferret out an estimate of this true parameter value.

Bayesian statistics, on the other hand, does not assume the existence of a true
parameter value. Instead, parameters are hypothesized to belong to an unknown
probability distribution. Observations are used to specify the probability distribu-
tion. Therefore, Bayesian methods produce a probability distribution of parameters,
while frequentist methods produce a value. Another cornerstone feature of Bayesian
methods is their use of the Bayes rule to modify the probability distribution of the
parameter using a posterior distribution, as shown in Equation 6-1. The posterior
distribution can be conceptualized as a distribution that utilizes the observed data
to constrain the family of probability densities, while the prior distribution is an
assumed distribution of parameters. The choice of prior is generally problem or
domain dependent and can be supplemented with observations gleaned from the
data. In Equation 6-1, set A denotes the observed data, and set B denotes model
parameters. Model parameters can come from a discrete or continuous probability
space. The cornerstone assumption of Bayes methods is that parameters B are
realizations from a probability distribution space. In Equation 6-1, Bi spans the
probability space of parameters B. If the space is discrete, the denominator in
Equation 6-1 will involve a sum. If it is continuous, it will involve an integral.
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P(B|A) denotes the posterior probability of parameters B given the observed
data A.

P(B|A) = P(A|B)P (B)

P (A)

= P(A|B)P (B)∑N
i=1 P(A|Bi)P (Bi)

for B ∈ discrete space

= P(A|B)P (B)∫
i
P (A|Bi)P (Bi)di

for B ∈ continuous space

(6-1)

Let us look at the mathematical formulation of Bayesian statistics to gain a better
understanding of its fundamentals. Let us denote the set of observations by (X, y).
We are attempting to fit a model y = f (X,β) to the observations where X is the
vector of exogenous or explanatory variables, y is a vector of endogenous variables
that the model is trying to predict, and β denotes a vector of model parameters.
In Bayesian statistics, β is assumed to belong to a class of parametric probability
distributions, and the model attempts to specify the hyper-parameters associated
with the probability distribution. As a result, a distribution of model parameters, β,
is predicted. This is denoted as P(β|X, y), also called the posterior density. X is
assumed to be an exogenous variable whose probability is not being modeled; we
are only concerned about the probability distribution of the dependent variable y,
the prior distribution of parameters β, and the posterior distribution of parameters
after observing the data.

A prior distribution of parameters, β, is specified by the user as P(β). This distri-
bution is chosen to conform to prior estimates about the parameter distribution, i.e.,
a distribution that is not influenced by observed data but is guided by intuition. The
choice of prior can be supplemented by insights gleaned from data. For example, a
linear model that has normal errors may be expected to have normally distributed
parameters. A priori estimates are intuitive guesses for a probability distribution.
Model fitting using Bayesian statistics attempts to tweak this probability distribution
to account for the observed data. This observation-aware distribution that refines the
prior probability distribution is called the posterior distribution. It can be derived
using the Bayes rule, as seen in Equation 6-2.

P(β|X, y, θ) = P(y|β,X, θ)P (β)∫
P(y|β,X, θ)P (β)dβ

(6-2)

In frequentist methods, we typically use the principle of maximum likelihood
to predict parameter values. Maximum likelihood begins with a functional form of
the probability distribution using the data and parameter values, P(y|X,β). This
expression is maximized with respect to β.
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Bayesian methods begin with the following two assumptions:

1. Prior distribution of parameters, P(β).
2. Probability distribution of observing the data given parameter values and any

other independent (exogenous) data X, P(y|X,β). This expression is also used
by the maximum likelihood method.

The point of departure between Bayesian methods and maximum likelihood–
based frequentist methods is the formulation of unconditional probability den-
sity, P(y|X). Maximum likelihood predicts this value as maxβ P (y|X,β), while
Bayesian methods use posterior density, P(β|y,X), to derive the unconditional
probability density of data, y, as shown in Equation 6-3.

P(y|X) =
∫

P(y|X,β)P (β|X)dβ

=
∫

P(y|X,β)P (β)dβ

=
∫

model-likelihood × prior × dβ

(6-3)

For prediction, one can find a value of y that maximizes the unconditional
probability density shown in Equation 6-3, i.e., argmaxβ P (y|X). The posterior
distribution of β takes the data distribution observed in training into account for
making a prediction. After obtaining a distribution of y, one can obtain the most
probable value or expected value, as desired in the problem. This is shown in
Equation 6-4, where posterior density is used in the integral to obtain marginal
density of the data. We can then pick the expected value of y as an inference using
the marginal probability density.

P(y|X) =
∫ ∞

−∞
P(y|θ,X) × posterior × dθ

=
∫ ∞

−∞
P(y|θ,X)P (θ |y,X)dθ

yinf erence = E [y]

=
∫ ∞

−∞
yP (y|X)dy

(6-4)

In frequentist methods, confidence intervals for parameter estimates must be
derived by assuming a distribution. In Bayesian methods by contrast, the probability
distribution of parameter estimates is obtained naturally as a posterior distribution.
Corresponding intervals are known as credible intervals in Bayesian statistics.
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Hypothesis testing is another application where frequentist and Bayesian meth-
ods adopt markedly different approaches. In order to test a hypothesis using
the frequentist method, one must first formulate a null hypothesis based on the
model-likelihood function f (y|X,β). After this, a statistic is calculated under the
assumption that the data is drawn randomly from the underlying distribution. A
null hypothesis can then be accepted or rejected with a specified level of confidence
depending upon the p-value. Bayesian methods, on the other hand, are endowed with
a hypothesis-testing ability naturally because they formulate a posterior distribution
of parameters. For example, one can compute the probability of hypothesis β < 0.2
directly using the posterior distribution P(β|y,X) and then accept or reject the
hypothesis based upon the computed probability and level of confidence, α. This
is shown in Equation 6-5.

P(β < p) =
∫ p

−∞
P(β|y,X)P (β)dβ

P (β < p) > α accept the hypothesis

< α reject the hypothesis

α = confidence level

(6-5)

As the number of observations goes to infinity, parameter values predicted by the
frequentist approach converge with the parameter values that maximize the posterior
density of parameters using the Bayesian approach. This will be verified in the next
section using an example.

6.1 Application

Let us briefly look at a statistical problem to drive home the difference between
frequentist and Bayesian approaches with respect to model fitting, inference, and
hypothesis testing.

6.1.1 Model Fitting

Wewant to predict whether the five-day return for Bank of America’s common stock
(symbol BAC) is positive or negative. In previous chapters on linear regression,
GLM, and Markov regime switching models, we studied different models for
handling this problem. Those were all frequentist approach–based models. In this
section, let us model the binary endogenous variable (if the five-day return for
BAC is positive or negative) as the outcome of a coin toss with probability θ

of giving a positive return (showing heads) and probability 1 − θ of giving a
non-positive (negative or zero) return. This model does not use any economic or
other exogenous (explanatory) variables for simplicity. The probability of observing
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k positive returns in a set of N observations can be written using a binomial
distribution as shown in Equation 6-6.

P(y|θ) =
(

N

k

)
θk (1 − θ)N−k (6-6)

Equation 6-6 is the likelihood of data; writing the log-likelihood and maximizing
it with respect to model parameter θ gives the value k

N
, as shown in Equation 6-7.

logP(y|θ) = log

(
N

k

)
+ k log θ + (N − k) log (1 − θ)

∂ logP(y|θ)

∂θ
= 0 = k

θ
− N − k

1 − θ

θ

1 − θ
= k

N − k

θ = k

N

(6-7)

Now let us turn to fitting the Bayesian model. First, we select a prior for the
probability of observing a positive five-day return for Bank of America’s common
stock. Let us use a beta distribution shown in Equation 6-8. We keep the same
probability function for likelihood of data P(y|θ) as was used for the frequentist
approach in Equation 6-6.

P(θ) = θα−1 (1 − θ)β−1

∫ 1
0 θα−1 (1 − θ)β−1 dθ

(6-8)

Using the prior and likelihood, we can write the unconditional probability of data
as shown in Equation 6-9.

P(y, θ) = P(y|θ)P (θ)

=
(

N

k

)
θk (1 − θ)N−k θα−1 (1 − θ)β−1

∫ 1
0 θα−1 (1 − θ)β−1 dθ

=
(

N

k

)
θk+α−1 (1 − θ)N−k+β−1

∫ 1
0 θα−1 (1 − θ)β−1 dθ

(6-9)
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The posterior probability of parameter θ can be written using the Bayes rule, as
shown in Equation 6-10.

P(θ |y) = P(y|θ)P (θ)

P (y)

=
(
N
k

)
θk (1 − θ)N−k θα−1(1−θ)β−1

∫ 1
0 θα−1(1−θ)β−1dθ∫ 1

0 P(y|θ)P (θ)dθ

(6-10)

Let us look at the numerator of the final equation in Equation 6-10. It can be
recast into Equation 6-11. In this equation, we have used the notation for the beta
function, B(α, β), which is defined as

∫ 1
0 θα−1 (1 − θ)β−1 dθ .

Numerator =
(

N

k

)
θk+α−1 (1 − θ)N−k+β−1

∫ 1
0 θα−1 (1 − θ)β−1 dθ

=
(

N

k

)
θk+α−1 (1 − θ)N−k+β−1

B(α, β)

(6-11)

The denominator of Equation 6-10 can be simplified, as shown in Equation 6-12.

∫ 1

0
P(y|θ)P (θ)dθ =

∫ 1

0

(
N

k

)
θk (1 − θ)N−k θα−1 (1 − θ)β−1

∫ 1
0 θα−1 (1 − θ)β−1 dθ

dθ

=
(
N
k

)

B(α, β)

∫ 1

0
θk+α−1 (1 − θ)N−k+β−1

=
(

N

k

)
B(k + α,N − k + β)

B(α, β)

(6-12)

Finally, putting together the expression for the numerator (Equation 6-11) and
denominator (Equation 6-12), we get the expression for the posterior probability of
parameter θ , as shown in Equation 6-13.

P(θ |y) =
(
N
k

)
θk+α−1(1−θ)N−k+β−1

B(α,β)(
N
k

)B(k+α,N−k+β)
B(α,β)

= θk+α−1 (1 − θ)N−k+β−1

B(k + α,N − k + β)

∼ Binomial(k + α,N − k + β)

(6-13)
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Expressions for the posterior parameter distribution in Equation 6-13 and the
unconditional probability distribution of data in Equation 6-9 constitute the fitted
Bayesian model. Using these two equations, we can make predictions and undertake
hypothesis testing, as shown in the next two sections.

One important feature to note about Bayesian modeling is that the parameters
that maximize the joint likelihood function of data and parameters P(y, θ) also
maximize the posterior probability P(θ |y). For the specific case of the binomial
distribution, this can be seen from Equations 6-9 and 6-13. Both expressions are
proportional to θk+α−1 (1 − θ)N−k+β−1. For the general case, we can likewise
establish that the joint probability density and the posterior probability share the
same parameter value θ as the maximizer. This is shown in Equation 6-14.

P(y, θ) = P(θ |y)P (y)

∴ argmax
θ

P (y, θ) = argmax
θ

P (θ |y)P (y)

= P(y) argmax
θ

P (θ |y)

= argmax
θ

P (θ |y) ∵ P(y) > 0

(6-14)

6.1.2 Inference

Let us use the fitted binomial model to predict if the five-day return of BAC stock
is positive. The frequentist approach–based binomial model will assign a constant
probability θ of observing a positive return. We can refit the model to data once a
new observation is available. In this setup, θ will be updated after each observation.
To make a prediction, we toss a coin with probability θ of showing heads (success)
and predict the five-day return to be positive if the toss reveals a head and predict a
non-positive return for a tail. Let us train the model using data from January 2000 to
January 2022 and make predictions for a 2.5-year period from January 2022 to July
2024. The accuracy of model predictions is 48.62%.

Turning to the Bayesian model, let us set the hyper-parameters of the selected
prior for θ (binomial distribution) as α = β = 0.5. As with the frequentist approach,
we train the model from January 2000 to January 2022 and make predictions for a
2.5-year period from January 2022 to July 2024. After each prediction, once the final
data is available, we update the posterior distribution. In order to make a prediction if
the five-day return on BAC stock is positive or not, we first maximize the posterior
density to find the optimum value of θ and then toss a coin with θ probability of
heads (success) to predict if the return is positive. A head translates to a positive
return. Let us first find the value of θ that maximizes the probability of data. This
value of θ also maximizes the posterior probability of θ as seen from Equation 6-14.

In general, one will need to resort to numerical methods for maximization
of posterior probability in Equation 6-19. However, for the present problem of
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coin toss, we can derive an analytical expression for θ that maximizes posterior
density, as shown in Equation 6-15. For the general case, posterior probability
may be intractable for analytic maximization. One may need to resort to numerical
differentiation to obtain the optimum parameter value.

P(θ |y) = θk+α−1 (1 − θ)N−k+β−1

B(k + α,N − k + β)

= Constant × θk+α−1 (1 − θ)N−k+β−1

logP(θ |y) = logC + (k + α − 1) log θ + (N − k + β − 1) log (1 − θ)

∂ logP(θ |y)

∂θ
= k + α − 1

θ
− N − k + β − 1

1 − θ
= 0

k + α − 1

θ
= N − k + β − 1

1 − θ

θ = k + α − 1

N + α + β − 2
(6-15)

From Equation 6-15, we can observe that as the number of observations goes to
infinity, i.e., N → ∞, k → ∞, the optimum value of θ converges to k

N
, as shown

in Equation 6-16. As we can recall from Equation 6-7, this is the parameter value
from the frequentist approach.

N → ∞, k → ∞, θ
optimum
bayes → k

N
(6-16)

For making an inference, we perform the following steps shown in pseudo-
code 8.

Algorithm 8 Inference Using Bayesian Model
Require: Hyper-parameters defining the prior probability: α, β, and input binary data. In the

problem under consideration, binary data is a flag indicating if the five-day return on BAC
stock is positive.

1: for i = 1, 2, · · · , testing data rows do
2: Compute the posterior density using Equation 6-13.
3: Maximize it and obtain the value of θ . For this problem, maximization can be done

analytically, as shown in Equation 6-15.
4: Compute the probability of observing a positive return with the value of θ obtained from

maximizing the posterior density, P(y = 1|θ). Use Equation 6-6.
5: Update the posterior when actual observation becomes available.
6: end for
7: Compare the predictions against ground truth values.
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6.1.3 Hypothesis Testing

For hypothesis testing, the frequentist approach assumes an underlying distribution
and considers the null hypothesis to be the proposition that the hypothesized value is
obtained by chance or a random draw from the assumed distribution. It computes a
t-statistic of the calculated parameter value and associated p-value. If the p-value is
too small, we can reject the null hypothesis using a prespecified confidence interval
and state that we do not have enough confidence (at the specified level) in the
underlying distribution and calculation of θ . Failure to reject the null hypothesis is
considered an implicit confirmation that the underlying distribution and calculated
parameter value are correct because we were not able to disprove it.

Returning to our example, let us try to test the hypothesis that θ = 0.5 for
predicting five-day returns of BAC stock. The null hypothesis is that five-day returns
follow a binomial distribution with θ = 0.5. The calculated value of θ = 0.527656
on 2024-07-08 (July 8, 2024). Using this, the p-value is 1.0, and we cannot reject
the null hypothesis at any significance level. This is taken as evidence that the model
and parameter value is correct.

For the Bayesian approach, hypothesis testing involves integrating the posterior
density over the relevant region of θ to obtain the probability of a parameter value
exceeding a limit. For example, if we wish to compute the confidence that θ falls
between 0.49 and 0.51, we integrate the posterior probability in Equation 6-13
between 0.49 and 0.51 and accept or reject the hypothesis based on a confidence
level. This is shown in Equation 6-17.

P(0.49 ≤ θ ≤ 0.51) =
∫ 0.51

0.49
P(θ |y)dθ

Accept if P(0.49 ≤ θ ≤ 0.51) ≥ confidence level

(6-17)

The code for model fitting, drawing inference, and testing hypothesis for the
example discussed is presented in Listing 6-1.

Listing 6-1. Model Fitting, Inference Drawing, and Hypothesis Testing in Frequentist and
Bayesian Approaches

1 import numpy as np
2 import pandas as pd
3 import logging
4 import os
5 import matplotlib . pyplot as plt
6 from abc import ABC, abstractmethod
7 import scipy . stats as ss
8

9 logging . basicConfig ( level =logging.DEBUG)
10

11

12 class BinomialModel(ABC):
13 PRICE_COL = "Close"
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14 PERIOD = 5
15

16 def __init__ ( self , dirname, security , trainTestSplit =0.9, seed=10):
17 self . logger = logging .getLogger( self . __class__ .__name__)
18 df = pd.read_csv(os . path . join (dirname, f"{ security }.csv") , parse_dates =["Date"

])
19 df = self . calculateReturns (df)
20 self . df = df
21 self .dirname = dirname
22 self . security = security
23 self . trainingRows = int (df .shape[0] ∗ trainTestSplit )
24 np.random.seed(seed)
25

26 def calculateReturns ( self , df) :
27 price = df . loc [:, self .PRICE_COL].values
28 returnCol = price [ self .PERIOD:] / price[:− self .PERIOD] − 1
29 df . loc [:, " return "] = 0
30 df . loc [0: df .shape[0] − self .PERIOD − 1, "return"] = returnCol
31 df = df . loc [0: df .shape[0] − self .PERIOD − 1, :]. reset_index (drop=True)
32 return df
33

34 @abstractmethod
35 def fit ( self , endIndex=None):
36 raise NotImplementedError(f"Sub class { self . __class__ .__name__} needs to

implement")
37

38 @abstractmethod
39 def predict ( self , index) :
40 raise NotImplementedError(f"Sub class { self . __class__ .__name__} needs to

implement")
41

42 @abstractmethod
43 def testHypothesis ( self , theta =None, nobservation=None, nsuccess=None):
44 raise NotImplementedError(f"Sub class { self . __class__ .__name__} needs to

implement")
45

46 def test ( self ) :
47 actual = np.zeros ( self . df .shape[0] − self . trainingRows , dtype=np. int8 )
48 predicted = np.zeros ( actual .shape [0], dtype=np. int8 )
49 thetaArr = np.zeros ( actual .shape [0], dtype=np. float32 )
50 for i in range( self . trainingRows , self . df .shape [0], 1) :
51 predicted [ i − self . trainingRows] = self . predict ( i )
52 actual [ i − self . trainingRows] = np.where( self . df . loc [ i , " return "] > 0, 1,

0)
53 thetaArr [ i − self . trainingRows] = self . theta
54 self . fit ( i )
55

56 accuracy = (sum(actual == ( predicted ) ) / actual .shape [0]) ∗ 100
57 self . logger . info ("Overall accuracy of %s: %.2f", self . __class__ .__name__,

accuracy)
58 return thetaArr
59

60 def compareResults( self , freq , bayes) :
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61 dates = self . df . loc [ self . trainingRows :, "Date" ]. values
62 fig , ax = plt . subplots (nrows=2, figsize =(10, 7))
63 ax [0]. plot ( dates , freq , label =" Frequentist ")
64 ax [0]. plot ( dates , bayes, label ="Bayesian")
65 ax [0]. set ( title =" Frequentist and Bayesian Values of Parameter Theta")
66 ax [0]. set_ylabel ("Theta")
67 ax [0]. set_xlabel ("Date")
68 ax [0]. legend ()
69 ax [0]. grid ()
70

71 diffs = freq − bayes
72 ax [1]. hist ( diffs , bins=20)
73 ax [1]. set ( title ="Histogram of Difference Between Frequentist and Bayesian

Predictions ")
74 ax [1]. grid ()
75 fig . tight_layout ()
76 plt . savefig (os . path . join ( self .dirname, f" diff_ { self . __class__ .__name__}.jpeg"),
77 dpi=500)
78 plt .show()
79

80

81 class Frequentist (BinomialModel):
82 def fit ( self , endIndex=None):
83 if endIndex is None:
84 endIndex = self . trainingRows
85 returns = self . df . loc [0:endIndex−1, " return " ]. values
86 self . theta = np.sum(returns > 0) / returns .shape[0]
87 self . logger . info (" class : %s, Date: %s, theta = %f", self . __class__ .__name__,

str ( self . df . loc [endIndex, "Date"]) , self . theta )
88

89 def predict ( self , index) :
90 return np.random.binomial(1, self . theta , 1)
91

92 def testHypothesis ( self , theta =None, nobservation=None, nsuccess=None):
93 if theta is None:
94 theta = self . theta
95 if nobservation is None:
96 nobservation = self . df .shape[0]
97 if nsuccess is None:
98 nsuccess = sum(self . df . loc [:, " return " ]. values > 0)
99 result = ss . binom_test(nsuccess , nobservation , theta )

100 self . logger . info ("P−value: %f", result )
101

102

103 class Bayesian(BinomialModel):
104 def __init__ ( self , dirname, security , trainTestSplit =0.9, seed=10, alpha=0.5, beta

=0.5) :
105 super () . __init__ (dirname, security , trainTestSplit , seed)
106 self . alpha = alpha
107 self . beta = beta
108

109 def fit ( self , endIndex=None):
110 if endIndex is None:
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111 endIndex = self . trainingRows
112 returns = self . df . loc [0:endIndex−1, " return " ]. values
113 N = returns .shape[0]
114 k = np.sum(returns > 0)
115 self . theta = (k + self . alpha − 1) / (N + self . alpha + self . beta − 2)
116 self . logger . info (" class : %s, Date: %s, theta = %f", self . __class__ .__name__,

str ( self . df . loc [endIndex, "Date"]) , self . theta )
117

118 def predict ( self , index) :
119 return np.random.binomial(1, self . theta , 1)
120

121 def testHypothesis ( self , theta =None, nobservation=None, nsuccess=None):
122 if theta is None:
123 theta = self . theta
124 if nobservation is None:
125 nobservation = self . df .shape[0]
126 if nsuccess is None:
127 nsuccess = sum(self . df . loc [:, " return " ]. values > 0)
128 result = ss . binom_test(nsuccess , nobservation , theta )
129 self . logger . info ("P−value: %f", result . pvalue)
130

131

132 if __name__ == "__main__":
133 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
134 freqModel = Frequentist (dirname, "BAC")
135 freqModel. fit ()
136 freq = freqModel. test ()
137 freqModel. testHypothesis ()
138

139 bayesianModel = Bayesian(dirname, "BAC", alpha=0.5, beta=0.5)
140 bayesianModel. fit ()
141 bayes = bayesianModel. test ()
142

143 freqModel.compareResults( freq , bayes)

Before doing a code walk-through, let us take a look at the results of fitting the
two models. As shown earlier, as the number of observations increases, the predicted
parameter values from both frequentist and Bayesian approaches converge. This can
be seen in the plot of results in Figure 6-1. Predictions of θ are virtually identical,
and the two plots lie on top of each other. There is a small difference between
them, as observed in the histogram of differences between their predictions. We
observe that the Bayesian estimate of θ is slightly higher, though the difference is
insignificantly small.

Code Explanation
Let us walk through the code in Listing 6-1.

1. The code uses a base class that contains the boilerplate code shared between
frequentist and Bayesian binomial models. Using class derivation enhances
code modularity, reduces duplication, and improves readability and code
maintenance. The base class is BinomialModel. It is an abstract base class.
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Figure 6-1. Comparison of Frequentist and Bayesian Predictions for Five-Day Return on BAC
Common Stock

In Python, one creates an abstract base class by deriving from the ABC class in
Python library abc.

2. Abstract base classes cannot be instantiated. They define interfaces, i.e., they
provide declaration of certain methods that a concrete subclass must implement.
Interface methods are declared using the decorator abstractmethod.

3. Abstract base class BinomialModel provides the following interface declara-
tions: fit, predict, and testHypothesis. It provides concrete implementation
for its constructor that reads the CSV file containing security price, calculates
returns, and computes the rows to use for model training. The class also
provides a method for testing the model, invoking the predict method which
must be implemented by a concrete subclass.

4. The code begins by instantiating a concrete subclass Frequentist that imple-
ments the abstract interfaceBinomialModel. The constructor of class Frequen-
tist is provided with the directory name containing data files and the name of
security (BAC).

5. The file is read and five-day returns computed inside the base class constructor.
6. The frequentist model is fit to training data. This method calculates θ .
7. It calls method test on the frequentist model. This method is implemented in

base class BinomialModel. The method steps through each day in the test
dataset. For each day, it does the following:
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• Predict the five-day return on day i using the current value of θ . This is done
by tossing a coin with a probability of success (heads) equal to θ using the
API numpy.random.binomial from the numpy library. This happens inside
method predict of the Frequentist class.

• It records if the actual five-day return is positive or not.
• It updates the value of parameter θ using the data for day i in the test dataset.

8. Method testHypothesis is called. This method tests the hypothesis if the
value of θ is different from the one actually computed. It uses the API
scipy.stats.binom_test from the scipy library, providing the number of obser-
vations, number of successes, and the value of θ to test as arguments. This
method has been replaced by binomtest in the latest version of scipy. It returns
the computed p-value for the hypothesis.

9. The Bayesian model is instantiated from classBayesian, providing the directory
name and security name as constructor arguments, as before, and providing
α = 0.5 and β = 0.5 as hyper-parameter values for the prior.

10. The Bayesian model is fitted to the training dataset inside the method fit. This
method computes the value of θ that maximizes the posterior density of θ .

11. The test method from the base class is called, which functions similarly as
described before, except that the predict method from the subclass is called.

12. Hypothesis testing is performed for the Bayesian class.

6.2 Bayesian Linear Regression

Linear regression involves fitting a linear model to a set of observations, y, as shown
in Equation 6-18. Unlike ordinary linear regression based on frequentist methods,
Bayesian linear regression assumes model parameters to follow a probability
distribution specified by an initial prior, P(β).

y = Xβ + ε

ε ∼ N(0, σ 2)

P (β) = N(μ0,�0) prior

P(y|X, β) = N(Xβ, σ 2)

(6-18)

Let us derive the posterior probability density of β using Equations 6-1 and 6-18.
Substituting the prior for β from Equation 6-18 into Equation 6-1, one gets the
expression shown in Equation 6-19. We have used the fact that X is an independent
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or exogenous variable. Also, the denominator in Equation 6-1 can be thought of as
a normalization factor, and we only look at the numerator.

P(β|y,X) = P(y|X,β)P (β)

P (y|X)

∝ P(y|X,β)P (β)

∝ exp

[
− 1

2σ 2

(
(y − Xβ)′ (y − Xβ) + (β − μ0)

′ (σ−2�
)−1

(β − μ0)

)]

∝ exp

[
− 1

2σ 2

(
β ′

(
X′X +

(
σ−2�

)−1
)

β − 2

(
μ

′
0

(
σ−2�

)−1 + X′y
)

β + · · ·
)]

∝ exp

[
− 1

2σ 2 (β − χ)′ �−1 (β − χ)

]

where χ =
(
X′X +

(
σ−2�

)−1
)−1 (

μ
′
0

(
σ−2�

)−1 + X′y
)

and � =
(
X′X +

(
σ−2�

)−1
)

= N (χ ,�)

(6-19)

As can be seen from Equation 6-19, a Gaussian prior density for β yields a
Gaussian posterior density. If we assume the prior density of β to be a normal
distribution centered at 0 with a variance of σ 2

0 , i.e., μ0 = 0 and � = σ 2
0 I, the

above expression can be simplified as shown in Equation 6-20.

P(β|y,X) ∼ N

((
X′X + σ−2σ 2

0 I
)−1

X′y,
(
X′X + σ−2σ 2

0 I
)−1

)
(6-20)

From Equation 6-20, we observe that the expression for posterior parameter
density is similar to the parameter density derived from the OLS solution. OLS
predicts the true parameter value to be

(
X′X

)
Xy, as shown in Equation 2-12. The

variance of parameter estimates is due to the variance of error term, ε, in OLS and
is shown in Equation 2-10. If we assume error term ε is normally distributed (note
this assumption is not required by OLS), we can write the probability distribution
of parameter β as shown in Equation 6-21.

βOLS = N
((
X′X

)−1 X′y,
(
X′X

)−1
σ 2

ε I
)

(6-21)

If we set the variance of the posterior distribution of β to 0 by setting σ0 = 0 in
Equation 6-20, we obtain the distribution implied by OLS in Equation 6-21 (after
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adjusting for a constant σε). If there is no uncertainty in our prior belief about the
value of parameter β, Bayesian estimates reduce to frequentist estimates.

Using normally distributed priors in Bayesian linear regression with the Gaussian
data distribution is equivalent to adding L2 regularization to OLS as discussed in
Section 2.7. To see why this is true, let us write the objective function for OLS
with L2 regularization, as shown in Equation 6-22. Differentiating with respect to
parameter β, we get the value of β which corresponds to the mean of the posterior
distribution of β using Bayesian regression, as seen from Equation 6-20.

max
β

1

2
(y − Xβ)′ (y − Xβ) + λ

2
β ′β

Differentiate with respect to β

− X′ (y − Xβ) + λβ = 0

β = (
X′X + λI

)−1X′y

(6-22)

For other prior distributions of β, a closed-form solution of the posterior
distribution may not be possible, and one must use numerical methods.

For inference, we are provided a set of exogenous variables as part of the test
dataset, and we want to predict the output for each test data point. The Bayesian
model furnishes a probability distribution P(y|Xtest), as shown in Equation 6-23.

P(y|Xtest) =
∫

P(y|Xtest,β)P (β|ytrain,Xtrain)dβ (6-23)

Integrating the parameter β, we get a distribution of y. In Equation 6-23,
P(β|ytrain,Xtrain) is the posterior distribution calculated using the training dataset.
In order to make an inference, we can maximize this probability with respect
to y and predict the value of y that maximizes the probability density. For
example, for Bayesian linear regression, the predicted value of y that maximizes
the probability P(y|Xtest) can be shown to be equal to Xtestβ̂ where β̂ is the
expected value of β obtained from its posterior density in Equation 6-19, i.e., β̂

=
(
X′
trainXtrain + (

σ−2�
)−1

)−1 (
μ

′
0

(
σ−2�

)−1 + X′
trainytrain

)

Let us look at an example to compare the predictions of frequentist-based OLS
with Bayesian linear regression.

6.2.1 Application

The Fama-French five-factor model is an enhancement to the capital-asset pricing
model and its progeny. The model uses additional risk factors in addition to the
market return to explain a security’s return. The model was proposed by Eugene
Fama and Kenneth French [22]. Prior to this model, Fama and French (1993) had



6.2 Bayesian Linear Regression 173

proposed a three-factor model [23]. The models were motivated by research that
found systematic influence of stock size and momentum on future returns of stocks
after accounting for market beta.

According to the Fama-French five-factor model, expected excess future returns
on a stock can be explained using a linear regression equation shown in Equa-
tion 6-24. In this equation, R(t) refers to the expected security return on day t .
Rrf (t) is the risk-free rate with the annual yield on a one-month US treasury bill
providing the value. SMB refers to “small minus big,” or the difference in return
between a diversified portfolio of small market capitalization stocks (small cap)
and large market capitalization (large cap) stocks. HML refers to “high minus low,”
or the difference in return between a diversified portfolio of high book value to
market value stocks and low book value to market value stocks. Book-to-market
value ratio is a measure of leverage. Book value is the liquidation value of a
company’s assets. Market value is the present market value of a company’s common
stock and bonds. Typically, companies that are well established and have steady
business tend to have higher book-to-market value of equity. RMW refers to “robust
minus weak,” or the difference in return between a diversified portfolio of stocks
with robust profitability and those with weak profitability. Profitability is measured
using earnings per share. Finally, CMW refers to “conservative minus weak,” or
the difference in return between a diversified portfolio of stocks with conservative
(steady) and weak investments into business. Portfolios are constructed by sorting
stocks on specific criteria followed by grouping them into deciles. For further details
on portfolio construction, please refer to the research paper [22].

R(t) − Rrf (t) = α + β1
(
Rmkt (t) − Rrf (t)

) + β2SMB(t)+
β3HML(t) + β4RMW(t) + β5CMA(t) + ε(t)

R(t) = Expected stock return at time t

Rmkt (t) = Expected market return at time t

Rrf (t) = Risk-free rate of return at time t

SMB(t) = Excess return on small-cap over large-cap stocks at time t

RMW(t) = Excess return on robust over weak profitability stocks

CMA(t) = Excess return of conservative over aggressive investment stocks
(6-24)

Let us also fit a ridge regression version of Equation 6-24. As shown in the last
section, this corresponds to Bayesian linear regression with isotropic prior, i.e., a
prior with variance as σ 2I. Following model fitting, let us use the two models to
predict returns for the test dataset and compare the predictions.

Values of risk factors
(
Rmkt (t) − Rrf (t)

)
, SMB(t), HML(t), RMW(t), and

CMA(t) have been made available by Fama and French on the website [24].
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The code for fitting the Fama-French five-factor model using OLS and Bayesian
linear regression models for one-month returns on Bank of America (BAC) common
stock is presented in Listing 6-2. As seen from the output, the Bayesian approach
gives a slightly better fit for the test dataset with a root-mean-square (RMS) error of
0.086662, as compared with 0.086962 from the OLS model.

Listing 6-2. Fitting Fama-French Five-Factor Model to BAC Stock One-Month Returns Using
OLS and Bayesian Approaches

1 import numpy as np
2 import pandas as pd
3 from abc import ABC, abstractmethod
4 import logging
5 import os
6 import statsmodels . api as sm
7

8 logging . basicConfig ( level =logging.DEBUG)
9

10

11 class FF5FactorBase(ABC):
12 PRICE_COL = "Close"
13 PERIOD = 21
14

15 def __init__ ( self , dirname, ff5FactorFile , security , trainTestSplit =0.9) :
16 self . logger = logging .getLogger( self . __class__ .__name__)
17 self .dirname = dirname
18 self . security = security
19 dfFF5 = pd.read_csv(os . path . join (dirname, ff5FactorFile ) , parse_dates =["Date"])
20 dfSecurity = pd.read_csv(os . path . join (dirname, f"{ security }.csv") , parse_dates

=["Date"])
21 self .endog, self .exog = None, None
22 self . df = self .processColumns(dfFF5, dfSecurity )
23 self .nTrainRows = int ( self . df .shape[0] ∗ trainTestSplit )
24 self .model = None
25

26 def processColumns(self , dfFF5, dfSecurity ) :
27 cols = ["Mkt−RF", "SMB", "HML", "RMW", "CMA", "RF"]
28 for col in cols :
29 dfFF5.loc [:, col ] = dfFF5.loc [:, col ]. astype (np. float32 )
30 dfSecurity . loc [:, self .PRICE_COL] = dfSecurity.loc [:, self .PRICE_COL].astype(

np.float32)
31 price = dfSecurity . loc [:, self .PRICE_COL].values
32 return1Mo = price [ self .PERIOD:] / price[0:− self .PERIOD] − 1
33 dfSecurity . loc [:, "1MoReturn"] = 0
34 dfSecurity . loc [ self .PERIOD:, "1MoReturn"] = return1Mo
35 dfMerged = pd.merge(dfSecurity , dfFF5, on=["Date"], how="inner")
36 self .endog = "1MoRetMinusRF"
37 dfMerged.loc [:, self .endog] = dfMerged.loc [:, "1MoReturn"] − dfMerged.loc[:, "

RF"]
38

39 self .exog = ["Mkt−RF", "SMB", "HML", "RMW", "CMA"]
40 dfMerged = dfMerged.loc[ self .PERIOD:, ["Date", self .endog] + self .exog].

reset_index (drop=True)
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41 return dfMerged
42

43 @abstractmethod
44 def fit ( self ) :
45 raise NotImplementedError(f"Sub class { self . __class__ .__name__} needs to

implement")
46

47 def test ( self ) :
48 groundTruth = self . df . loc [ self .nTrainRows:, self .endog]. values
49 exog = self . df . loc [ self .nTrainRows:, self .exog]. values
50 exog = sm.add_constant(exog, has_constant="add")
51 predicted = self .model. predict (exog)
52 diff = predicted − groundTruth
53 mse = np. sqrt (np.dot( diff , diff ) / diff .shape [0])
54 self . logger . info ("MSE error on test dataset : %f", mse)
55

56

57 class OLSModel(FF5FactorBase):
58 def fit ( self ) :
59 endog = self . df . loc [0: self .nTrainRows, self .endog]. values
60 exog = self . df . loc [0: self .nTrainRows, self .exog]. values
61 exog = sm.add_constant(exog, has_constant="add")
62 self .model = sm.OLS(endog, exog). fit ()
63 self . logger . info ( self .model.summary())
64 summaryfile = os . path . join ( self .dirname, self . __class__ .__name__ + ". txt ")
65 with open(summaryfile, 'w') as fh :
66 fh . write ( self .model.summary().as_text () )
67

68

69 class BayesianLinearRegModel(FF5FactorBase):
70 def fit ( self ) :
71 endog = self . df . loc [0: self .nTrainRows, self .endog]. values
72 exog = self . df . loc [0: self .nTrainRows, self .exog]. values
73 exog = sm.add_constant(exog, has_constant="add")
74 self .model = sm.OLS(endog, exog). fit_regularized (alpha=1.0, L1_wt=0.0)
75

76

77 if __name__ == "__main__":
78 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
79 ff5file = " ff5Factors .csv"
80 security = "BAC"
81 ols = OLSModel(dirname, ff5file , security )
82 ols . fit ()
83 ols . test ()
84

85 bayesian = BayesianLinearRegModel(dirname, ff5file , security )
86 bayesian . fit ()
87 bayesian . test ()
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Code Explanation
Let us walk through the code in Listing 6-2.

1. Let us quickly recapitulate the code structure before stepping through the logic
in the order of execution. Abstract base class FF5FactorBase contains the
boilerplate code for reading the Fama-French five-factor model file and security
file and testing the model on the test dataset.

2. Abstract base class FF5FactorBase derives from the ABC class of the abc
library. This class has abstract method fit which needs to be implemented inside
a concrete subclass. Additionally, themodel attribute of this class is set toNone
and needs to be instantiated by concrete subclasses.

3. OLSModel and BayesianLinearRegModel are the two concrete subclasses
that derive from abstract base class FF5FactorBase. These two classes provide
an implementation of abstract method fit.

4. Base class FF5FactorBase defines a member PERIOD which determines the
number of days used for calculating return. We are calculating a one-month
return, so this value is set to 21 trading days.

5. Stepping through the code in the order of execution, the OLSModel class
is instantiated first, with three arguments provided to its constructor—the
directory name containing data files, the name of the file containing historical
values of Fama-French five factors, and the name of the security.

6. The constructor of class OLSModel first calls the constructor of the base class.
Inside the base class, input files are read as dataframes using the pandas library.

7. The one-month return of the BAC common stock is computed as r(t) =
P(t)

P (t−21) − 1. It should be noted that these are contemporaneous returns.
8. It joins the dataframes containing Fama-French factors and security returns.
9. The code computes the difference between the one-month security return and

the risk-free rate of return and stores it in column 1MoRetMinusRF of the
dataframe.

10. The OLS model is fitted on the training dataset after adding an intercept to the
regression. It uses the fitmethod of theOLS class from the statsmodels library.

11. The test dataset is used for predicting the security’s one-month returns and root-
mean-square error against actual returns computed and reported.

12. A similar process is followed for the BayesianLinearRegModel class. The
only difference from the OLSModel class is the API used for fitting the model.
Here, we fit a regularized model with L2 regularization (ridge regression).
To achieve this, the fit_regularized(alpha=1.0, L1_wt=0.0) API is invoked.
Alpha of 1.0 indicates the weight for the regularization term, and L1_wt
indicates the proportion of L1 or norm-1 regularization to add. This is also
called lasso regularization—here, we use none. Entire regularization comes
from L2 penalty on model weights.

13. The root-mean-square error on the test dataset is computed and printed inside
the fit method defined in the base class.
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6.2.2 Conjugate Priors

In Bayesian statistics, we have encountered two related probability distributions for
model parameters θ : prior distribution P(θ) and posterior distribution P(θ |y,X).
When the two probability functions belong to the same class of probability density
functions, we say that the prior and the probability density function P(y|θ ,X) are
conjugate priors.

We have encountered two conjugate priors so far. We observed that a Gaussian
prior density and a Gaussian probability distribution gave a Gaussian posterior
density. Similarly, a prior with a beta distribution along with binomial probability
density gave a binomial posterior density. Therefore, beta and binomial distributions
are conjugate priors.

A gamma prior distribution along with Poisson probability density yields a
gamma posterior density. Therefore, gamma and Poisson distributions are conjugate
priors. This is shown in Equation 6-25. It is useful to know about conjugate
priors because it affords analytic tractability in writing out the posterior density
function. Knowing conjugate priors, we can select appropriate prior distributions
for enhancing analytic tractability.

P(θ |y,X) ∝ P(y|θ,X)P (θ)

= Poisson (y, θ)Gamma (θ;α, β)

= e−θ θy

y!
βα

	(α)
θ(α−1)e−βθ

= βα

	(α)
θ(α−1+y)e−(β+1)θ

= βα

	(α)

	(α + y)

(β + 1)(α+y)
Gamma (θ;α + y, β + 1)

= Gamma distribution

(6-25)

A table showing commonly encountered conjugate priors is shown in Table 6-1.
Let us look at another conjugate prior pair: a categorical distribution for the

likelihood function and a Dirichlet distribution for prior. The categorical distribution
is a generalization of the Bernoulli distribution because it has K distinct categories
in contradistinction with the Bernoulli distribution that has two categories. The
categorical distribution hasK−1 free parameters: p1, p2, · · · , pK with the condition∑K

i=1 pi = 1, which reduces the number of free parameters by one. Its probability
density is shown in Equation 6-26. I (xi = i) denotes the indicator function that
takes the value of one if x observation belongs to category i.

PDFcategorical =
K∏

i=1

p
I (x=i)
i (6-26)
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Table 6-1. Conjugate priors

Probability Density Model Parameters Prior Prior Hyper-parameters

Binomial θ Beta α, β

Negative binomial θ Beta α, β

Multinomial p1, p2, · · · , kk Dirichlet α1, α2, · · · , αk

Gaussian σ0 Gaussian μ, σ

Gaussian σ0 Inverse gamma α, β

Gaussian σ0 Gamma α, β

Multivariate normal μ, � Inverse Wishart ν, ψ

Multivariate normal μ, � Multivariate normal μ0, �0

Multivariate normal μ, � Wishart ν, V
Uniform θ Pareto xmax , k

Exponential λ Gamma α, β

Poisson λ: rate Gamma α, β

Categorical p1, · · · , pK Dirichlet p1, · · · , pK , α1, · · · , αK

Gamma αp , βp Gamma α, β

Inverse gamma αp , βp Gamma α, β

The Dirichlet distribution is a multivariate generalization of the beta distribution.
It has a density function shown in Equation 6-27, with parameters α1, α2, · · · , αK .

PDFDirichlet = 1

B(α)

K∏
i=1

pα−1
i

pi ∈ [0, 1]

K∑
i=1

pi = 1

B(α) =
∏K

i=1 	 (αi)

	
(∑K

i=1 αi

)

(6-27)

As can be seen from the expressions of probability density functions, the product
of the categorical and Dirichlet distributions’ probability density function will yield
the PDF of another Dirichlet distribution with parameters α1 + I (x = 1), · · · ,
αK + I (x = K).

6.3 Bayesian Kernel Regression

Bayesian kernel regression applies the Bayesian approach to parameter estimation
on top of kernel regression developed in an earlier chapter. The posterior probability
of parameters is the linchpin of Bayesian regression. As is customary in Bayesian
statistics, we use the Bayes rule to compute the posterior distribution. The selection
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of prior probability is application specific. Likelihood (or probability of data
conditional on parameter values) uses kernel regression.

For the specific case of linear kernel regression with Gaussian noise and Gaussian
prior, we observed that regression was equivalent to ridge regression with L2 (norm
2) regularization. The same is true for kernel regression. Using the loss function
from Equation 4-3 and appending an L2 loss term, we can write the equivalent loss
function for Bayesian regression for this specific case.

L(β) = 1

2N

N∑
i=1

⎛
⎝yi −

k∑
j=1

βjψj (Xi)

⎞
⎠

2

+ 1

K

K∑
j=1

β2
j (6-28)

6.4 Bayesian Generalized Linear Regression

Bayesian generalized linear regression uses the likelihood function specific to the
case of the generalized linear model and adds an assumed prior distribution for the
parameters to formulate a posterior distribution of parameters following the Bayes
rule. Because the likelihood from the generalized linear model is usually not from
a class of conjugate priors with the assumed prior probability, we have to resort to
numerical approximation or numerical simulation. We will consider each of these
methods with a concrete example.

Let us consider a binomial generalized linear model, also known as logistic
regression. As shown in Equation 3-17, the likelihood function is

(
N
k

)
pk(1−p)N−k .

Setting the number of trials to 1, i.e., N = 1, and the probability of success to θ , the
likelihood for the entire dataset (yi,Xi) where yi is 1 or 0 can be written as shown
in Equation 6-29.

P(y|X, θ) =
N∏

i=1

θyi (1 − θ)1−yi (6-29)

Let us use a Gaussian prior for θ centered at θ0 with variance σ 2
0 . Using the Bayes

rule, the posterior density for θ is written in Equation 6-30.

P(θ |y,X) = P(y|θ,X)P (θ)∫ ∞
−∞ P(y|θ,X)P (θ)dθ

∝ P(y|θ,X)P (θ)

=
N∏

i=1

θyi (1 − θ)1−yi
1√
2πσ 2

0

exp

(
− (θ − θ0)

2

2σ 2
0

)

∝
N∏

i=1

θyi (1 − θ)1−yi exp

(
− (θ − θ0)

2

2σ 2
0

)

(6-30)
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In order to make an inference, we need to calculate the expected value of y

using the posterior density of θ to obtain the marginal distribution of y, as shown in
Equation 6-31.

yinf erence = E[y]
First compute posterior density P(θ |y,X)

Then compute marginal density P(y|X)

P (y|X) =
∫

likelihood × posterior × dθ

=
∫

P(y|θ,X)P (θ |y,X)dθ

E[y] =
∫

yP (y|X)dy

(6-31)

Since the posterior function in Equation 6-30 does not have a closed-form
analytical solution, the integral in Equation 6-31 for computing marginal density
needs to be evaluated numerically or approximated. Let us look at these twomethods
in the following two sections.

6.4.1 Laplace Approximation

The Laplace approximation is a method for calculating an approximate analytical
expression for a posterior distribution in the neighborhood of its maxima using
a Taylor expansion. Let θm be the parameter value that maximizes the posterior
density. The method is best understood by looking at the following steps involved
in computing an approximation to posterior density.

1. Write the expression of posterior density, as shown, for example, in Equa-
tion 6-30.

2. Find the parameter θm that maximizes the posterior density. Use numerical
methods if necessary.

3. Let θm denote the parameter value that maximizes the posterior density. This

means that dP (θ |y,X)
dθ

∣∣∣
θ=θm

= 0.

4. Use a Taylor expansion in the neighborhood of θm to write an expression for
posterior density, as shown in Equation 6-32.

P(θ |y,X) = P(θm|y,X) + 1

2
(θ − θm)T H(θ − θm) (6-32)

5. Use this expression in calculating the marginal density of y in Equation 6-31.



6.4 Bayesian Generalized Linear Regression 181

An apparent shortcoming of the method is that it only linearizes the posterior
density in the neighborhood of its maxima. Away from the maximum, the value
may be quite different from the linearized approximation. Due to this, numerical
methods such as Markov Chain Monte Carlo are usually preferred in practice. We
will look at this method in the next section.

6.4.2 Markov Chain Monte Carlo Method

The Markov Chain Monte Carlo (MCMC) method is the workhorse of Bayesian
statistics. In practice, most expressions of posterior density and marginal likelihood
are not amenable to analytical calculations. This necessitates using an approach
leveraging numerical computation. As seen from Equation 6-31, one needs to
compute the integral of posterior density or the product of prior probability and
model likelihood in order to make an inference. This integral also occurs in the
denominator of the posterior density as a normalization factor. Hence, the method
chosen must not rely on the computation of the normalization factor of posterior
density because that is the problem being tackled by the method. It needs to work by
calculating the posterior density up to a normalization constant. To state succinctly,
the method needs to evaluate the expression shown in Equation 6-33.

Evaluate I =
∫ ∞

−∞
P(y|θ,X)P (θ)dθ (6-33)

For one-dimensional problems where the parameter vector θ is a scalar, we could
discretize the grid and approximate the integral as Riemann sums, as shown in
Equation 6-34. However, this approach suffers from the curse of dimensionality. For
multidimensional parameter vector θ , the number of grid points for discretization
increases exponentially, by a power of the parameter vector’s dimensionality.
Additionally, for applications with an infinite-size domain, it is not straightforward
to determine where to stop discretization.

Discretize θ ∈ (−∞,∞) as θ1, θ2, · · · , θN over its one-dimensional domain

Determine where to cut off discretization

I ≈ 1

N − 1

N−1∑
i=1

P(y|θ = θi + θi+1

2
,X)P (θ = θi + θi+1

2
) (θi+1 − θi)

(6-34)

In order to tackle the twin challenge of deciding where to stop discretization and
the curse of dimensionality, one can use importance sampling. Let us look at this
approach briefly because the Markov Chain Monte Carlo method is motivated by
importance sampling.
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Importance Sampling
Let us assume we have a probability density Q(θ) that has the same support as the
posterior density P(θ |y,X). This means that the two probability functions have the
same domain on θ . If we can sample from probability density q(θ), the integral in
Equation 6-33 can be computed using the following method:

1. Sample θ1, θ2, · · · , θN from Q(θ).
2. Evaluate the posterior density at the sampled points, i.e., evaluate the following

functions P(y|θ1,X)P (θ1)
Q(θ1)

, P(y|θ2,X)P (θ2)
Q(θ2)

, · · · , P(y|θN ,X)P (θN )
Q(θN )

.
3. Approximate the integral as the average of the above computed values, as shown

in Equation 6-35.

I ≈ 1

N

N∑
i=1

P(y|θi,X)P (θi)

Q(θi)
(6-35)

Weight 1
Q(θN )

is multiplied with each posterior probability value to account for
the fact that we have sampled from distribution Q(θ).

The MCMC algorithm generates a set of correlated points θ1, θ2, · · · , θN such
that the points begin to approach a stationary density. If we choose the stationary
density to be the posterior density we wish to evaluate, we can use the samples
after a cutoff index such as i for the evaluation of the integral in Equation 6-33.
This algorithm of selecting correlated points that begin to approach the desired
probability density after a cutoff value is also known as the Metropolis-Hastings
algorithm.

Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm is depicted in pseudo-code 9. In order to state
it in a generic fashion, let us say we wish to compute the integral in Equation 6-36.
Our original problem of computing the normalization factor of posterior density
can be recast to this form by setting h(y|θ) ≡ P(y|θ,X) and Q(θ, y,X) ≡ P(θ).
It is difficult to sample directly from P(θ |y,X). Q(θ, y,X) does not need to be
a normalized probability distribution. It is sufficient for it to be proportional to a
probability distribution. For example, in order to evaluate the expected value of y

in order to make an inference in Bayesian statistics using Equation 6-23, we set
h(y|θ) ≡ y and Q(θ, y,X) ≡ P(y|θ,X)P (θ). In this formulation, Q(θ, y,X) is
proportional to the posterior distribution P(θ |y,X). The MCMC algorithm will give
us a sample of draws from the posterior density of θ using the aforementioned value
of Q(θ, y,X) because it is proportional to the posterior density.

I =
∫ ∞

−∞
h(y|θ)Q(θ, y,X)dθ (6-36)

There are two prerequisites that must be met to ensure that the generated chain
of parameter values converges to the target probability distribution. The proposal
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Algorithm 9 Metropolis-Hastings Algorithm
Require: A proposal density function g(θt+1|θt ) and initial state θ0. We should be able to sample

from proposal density function g(θt+1|θt ).
1: Set t = 0.
2: for t = 1, 2, · · · , do
3: Sample a random θt from the proposal density function, θt ∼ g(θ |θt−1).
4: Calculate the acceptance probability A(θ, θt−1) using Equation 6-37.

A(θ, θt−1) = min

(
g(θt−1|θ)

g(θ |θt−1)

Q(θ, y,X)

Q(θt−1, y,X)
, 1

)
(6-37)

5: Sample a random number u from a uniform distribution, i.e., u ∼ U [0, 1].
6: If u ≤ A(θ, θt−1), accept θ as the parameter value, i.e., θt ← θ .
7: If u > A(θ, θt−1), reject θ , i.e., θt ← θt−1.
8: end for
9: After a certain number of time steps K , θk ∼ Q(θ, y,X) for all k ≥ K . This period is known

as the burn-in period.
10: Calculate the integral in Equation 6-36 as 1

N−K

∑N
i=K h(y|θi).

density function must obey a condition known as detailed balance, and the target
probability density Q(θ, y,X) must be aperiodic. Once these conditions are met,
we can establish that the values of the parameter, θ , produced by the Metropolis-
Hastings algorithm converge to the target probability distribution. Let us look at the
two conditions below:

1. Detailed balance condition for the proposal distribution and the target
probability distribution: This condition states that every transition θt → θt+1 is
reversible, i.e., the probability of going from θt to θt+1 is equal to the probability
of transitioning from θt+1 to θt . This is shown in Equation 6-38.

P(θt )P (θt+1|θt ) = P(θt+1)P (θt |θt+1) (6-38)

2. Aperiodicity of the target probability distribution: The target probability
distribution should be aperiodic. This means that the target distribution should
be unique. It must not have closed cycles. For example, if a system has four
states, two of which lead exclusively to one another, the system is periodic.

Once the aforementioned conditions are satisfied, the Metropolis-Hastings algo-
rithm will produce a chain of values that will converge to the unique stationary
probability distribution. This assertion is proven in Equation 6-39.
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P(θt )P (θt+1|θt ) = P(θt+1)P (θt |θt+1) detailed balance

�⇒ P(θt+1|θt )

P (θt |θt+1)
= P(θt+1)

P (θt )

Let A(θt → θt+1) denote the acceptance probability

Also g(θt+1|θt ) denotes the proposal density function

P(θt+1|θt ) = P(θt )A(θt → θt+1)

∴ P(θt+1|θt )

P (θt |θt+1)
= P(θt )

P (θt+1)

A(θt → θt+1)

A(θt+1 → θt )

= P(θt+1)

P (θt )

�⇒ A(θt → θt+1)

A(θt+1 → θt )
= P(θt+1)

P (θt )

P (θt+1)

P (θt )

Select an acceptance ratio that satistfies the above condition

A(θt → θt+1) ≡ A(θt+1, θt )

= min

(
g(θt |θt+1)

g(θt+1|θt )

P (θt+1)

P (θt )
, 1

)

= min

(
g(θt |θt+1)

g(θt+1|θt )

Q(θt+1, y,X)

Q(θt , y,X)
, 1

)

(6-39)

In the last step of Equation 6-39, if g(θt |θt+1)

g(θt+1|θt )

P (θt+1)

P (θt )
≤ 1, then its reciprocal is

> 1. This implies that if A(θt+1, θt ) ≤ 1, then A(θt , θt+1) = 1. Therefore, the
condition A(θt→θt+1)

A(θt+1→θt )
≡ A(θt+1,θt )

A(θt ,θt+1)
= P(θt+1)

P (θt )
P (θt+1)
P (θt )

is satisfied. The same is true

when g(θt |θt+1)

g(θt+1|θt )

P (θt+1)

P (θt )
> 1.

Equation 6-39 shows that with the choice of acceptance ratio A(θt+1, θt ) =

min
(

g(θt |θt+1)

g(θt+1|θt )

P (θt+1)

P (θt )
, 1

)
, the Markov Chain converges to the stationary distribution

P(θ) which we chose to be Q(θt , y,X). This gives us a method of sampling from
the density Q(θt , y,X). Once we have samples from the density, we can evaluate
the integral in Equation 6-36 as shown in Equation 6-40.

I =
∫ ∞

−∞
h(y|θ)Q(θ, y,X)dθ

= 1

N − K

N∑
i=K

h(y|θi)

(6-40)

Similarly, in order to evaluate the normalization factor of the posterior density
function in Equation 6-33, we set h(y|θ) ≡ P(y|θ,X) and Q(θ, y,X) = P(θ)
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and draw samples from that distribution using the MCMC algorithm. Once the
MCMC chain converges to its stationary distribution, we will obtain samples from
P(θ) and can compute the normalization factor of posterior density as shown in
Equation 6-41. This assumes that it is hard to sample from the prior distribution
P(θ). If it is easy to sample from that distribution, we can simply draw samples
from the prior directly and use a vanilla Monte Carlo algorithm to approximate the
integral in normalization factor, as shown in Equation 6-42.

Compute the normalization factor for posterior density P(θ |y,X)

If it is not easy to sample from prior density P(θ), use the MCMC algorithm

Set Q(θ, y,X) = P(θ) and obtain samples from P(θ) using MCMC

I = 1

N − K

N∑
i=K

P (y|θi,X) with θi ∼ P(θ) using MCMC

K is the burn-in period
(6-41)

Compute the normalization factor for posterior density P(θ |y,X)

If it is easy to sample from prior density P(θ),

use the simple Monte Carlo algorithm

I = 1

N

N∑
i=1

P(y|θi,X) with θi ∼ P(θ) using direct samples from P(θ)

(6-42)

This is shown succinctly in pseudo-code 10.

Algorithm 10 Compute Normalization Factor for Posterior Density
1: Objective: Compute I (y) = ∫ ∞

−∞ P(y|θ,X)P (θ)dθ

2: if it is easy to sample from prior density P(θ) then
3: Sample θi ∼ P(θ)

4: Compute I (y) = 1
N

∑N
i=1 P(y|θi ,X)

5: else
6: if it is easy to sample from another distribution H(θ) having the same domain as P(θ)

then
7: Use importance sampling.
8: Sample θi ∼ H(θ)

9: Compute I (y) = 1
N

∑N
i=1 P(y|θi ,X)

P (θi )
H(θi )

10: else
11: Use the Metropolis-Hastings algorithm.
12: Set Q(θ, y,X) = P(θ)

13: Obtain samples from P(θ) using the MCMC algorithm.
14: Compute I (y) = 1

N−K

∑N
i=K P (y|θi ,X) where K is the burn-in period.

15: end if
16: end if
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The MCMC algorithm is frequently used to compute expected values of the
endogenous variable or its functions using posterior density of parameters. Because
it is difficult to sample directly from the posterior density, we set h(y|θ) to be the
function of interest and Q(θ, y,X) ≡ P(y|θ,X)P (θ) in order to draw samples
from the posterior and approximate the integral using Equation 6-40. The algorithm
is summarized in pseudo-code 11.

Algorithm 11 Compute Expected Value of Exogenous Variable in Bayesian Model
1: Objective: Compute E[y] = ∫

yP (y|X)dy for a Bayesian model.
2: E[y] = ∫

yP (y|X)dy = ∫
y
y

∫ ∞
θ=−∞ P(y|θ,X)P (θ)dθdy

3: ˜I (y) = ∫ ∞
−∞ P(y|θ,X)P (θ)dθ is the problem of computing the normalization factor for

posterior density from pseudo-code 10.
4: Use pseudo-code 10 to write ˜I (y). This will be a probability density for y. It will generally be

hard to sample y from this distribution.
5: Use the Metropolis-Hastings algorithm to sample from ˜I (y).
6: Set Q(θ, · · · ) = ˜I (y) with parameter θ ≡ y. We want to draw samples of y from this

distribution.
7: Set h(y|θ) ≡ y.
8: Obtain samples yi from ˜I (y) using the MCMC algorithm in pseudo-code 9.
9: Compute I = 1

N−K

∑N
i=K yi where K is the burn-in period.

Gibbs Sampling
Gibbs sampling is a simplification of the Metropolis-Hastings algorithm obtained
by using a set of conditional probability distributions. This algorithm is applied
for sampling from the joint probability distribution of parameters which is hard to
sample from directly, but the conditional probability distribution of each parameter
is easy to sample from.

Let us suppose the parameter space is N-dimensional, with
−→
θ ≡ (θ1, θ2, · · · , θN).

Symbol
−→
θ denotes that θ is a vector with components (θ1, θ2, · · · , θN). We want to

sample from P(θ1, θ2, · · · , θN), but it is hard to sample from this distribution
directly. This could be due to the fact that P(θ1, θ2, · · · , θN) has a complex
analytical expression. In order to apply Gibbs sampling, we must know how to
sample from each of the N conditional probability distributions below:

• P(θ1|θ2, · · · , θN)

• P(θ2|θ1, θ3, · · · , θN)

• P(θi |θ1, θ2, · · · , θi−1, θi+1, · · · , θN)

• P(θN |θ1, θ2, · · · , θN−1)

The algorithm is summarized in pseudo-code 12. One of its attractive features is
ease of implementation—at each step, we can update the parameters in place and
proceed to the next step.
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Algorithm 12 Sample from Joint Probability Distribution Using Gibbs Sampling
Require: N conditional probability distributions P(θi |θ1, θ2, · · · , θi−1, θi+1, · · · , θN ) for i ∈

[1, 2, · · · , N ]. Initial values of parameters
−→
θ (0) = (θ1(0), θ2(0), · · · , θN (0))

1: Objective: Sample
−→
θ = (θ1, θ2, · · · , θN ) from P(θ1, θ2, · · · , θN ).

2: for t = 1, 2, · · · , do
3: for i = 1, 2, · · · , N do
4: Sample θi from distribution P(θi |θ1(t), θ2(t), · · · , θi−1(t), θi+1(t−1), · · · , θN (t−1)).
5: Set θi(t) ← θi .
6: end for
7: Store

−→
θ (t) = (θ1(t), θ2(t), · · · , θN (t))

8: end for
9: After a burn-in period t∗, use the sample values of θ(t ≥ t∗) as samples from the joint

probability distribution P(θ1, θ2, · · · , θN ).

In order to understand why the algorithm works, let us look at the acceptance
probabilityA(θ(t+1), θ(t)) of a sample in the Gibbs sampling algorithm in pseudo-
code 12. This is shown in Equation 6-43. We observe that acceptance probability
reduces to one, which means all proposals for updated parameters are accepted.

A
(−→

θ (t + 1),
−→
θ (t)

)
≡ A

(−→
θ (t) → −→

θ (t + 1)
)

= min

(
g(

−→
θ (t)|−→θ (t + 1))

g(
−→
θ (t + 1)|−→θ (t)

P (
−→
θ (t + 1))

P (
−→
θ (t))

, 1

)

= min

(
P(θ1(t)|θ2(t + 1), θ3(t + 1), · · · )P (θ2(t)|θ1(t), θ3(t + 1), · · · ) · · ·
P(θ0(t + 1)|θ1(t), θ2(t), · · · )P (θ2(t + 1)|θ1(t + 1), θ3(t), · · · ) · · ·

P(
−→
θ (t + 1))

P (
−→
θ (t))

, 1

)

= min

(
P(

−→
θ (t))

P (
−→
θ (t + 1))

P (
−→
θ (t + 1))

P (
−→
θ (t))

, 1

)

= 1
(6-43)

The algorithm sketched in pseudo-code 12 is known as sequential scan Gibbs
sampling because we update the components of

−→
θ sequentially, stepping from

index 1 to N. If we select a random component i and update it to produce the next
parameter value, the resulting Gibbs sampler is known as the random scan Gibbs
sampler.
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6.4.3 Application

Market returns are frequently modeled using a Gaussian distribution centered
around a historical return with historical volatility as the variance. However,
deviations from a normal distribution are widely known and acknowledged among
financial analysts and researchers. For example, Cont (2001), Fama (1965), and Kon
(1984) document deviations of security returns from a normal distribution. A few of
those deviations are listed below:

1. Fat tails: Returns falling in the tail of distribution occur more frequently than
that predicted by a normal distribution.

2. Taller peak around mean: Distribution around the mean is higher, i.e., more
frequent, than that predicted by a normal distribution.

In order to model these known deviations, researchers have often used the
Student-T distribution as a substitute for the normal distribution. For example,
Blattberg and Gonedes (1974) investigate using the Student-T distribution to model
asset returns.

Volatility of returns are not constant either. Heteroskedasticity in asset returns is a
widely documented phenomenon. For example, Engle (1982) uses an ARCH model
to represent the dynamics of volatility. Bollerslev (1986) and Bollerslev (1987)
proposed an enhancement to the ARCH model by including an auto-regressive term
for volatility and christened the model as GARCH—an acronym that stands for
Generalized Autoregressive Conditional Heteroskedasticity. GARCH models have
motivated a long list of successors, such as EGARCH (Nelson, 1991).

Let us use the Metropolis-Hastings algorithm to sample security returns from the
joint distribution of returns conditional on volatility (Student-T distribution) and the
normal distribution of volatility derived using the GARCH(1,1) model. The joint
probability distribution cannot be sampled directly due to its intractable analytic
form.

1. Returns, conditional on mean and variance, are distributed according to a
Student-T distribution. The governing equation defines the likelihood of data and
is shown in Equation 6-44.

L(x|μ, ν) =
	

(
ν+1
2

)
√

πν	
(

ν
2

)
(
1 + (x − μ)2

ν

)− ν+1
2

Variance(x) = ν

ν − 2
for ν > 2

x ∈ (−∞,∞)

(6-44)

2. Mean return is the same as average daily return observed over the last five days
(or one week).
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3. Volatility of returns follows a GARCH(1,1) process, as shown in Equation 6-45.

Variance(x(t)|x(t − 1)) = σ(t)2 = β0 + β1x(t − 1)2 + β2σ(t − 1)2

x(t) = σ(t)ε(t)

ε(t) ∼ N(0, 1)
(6-45)

Let us use end-of-day prices for S&P 500 from 2000 to 2021 for fitting the
GARCH(1,1) model in Equation 6-45 to volatility of daily returns. Following this,
we use the fitted GARCH(1,1) to predict the next day’s volatility and set ν

ν−2 equal
to this value to compute the value of parameter ν in the Student-T distribution in
Equation 6-44. μ is computed using the average of the last five days of returns. We
sample from the joint distribution of returns and volatility using the Metropolis-
Hastings algorithm, compute the volatility of sampled returns, and compare the
bootstrap estimate of volatility against GARCH(1,1) predicted volatility and actual
volatility observed over the last five days. The algorithm is sketched in pseudo-
code 13.

Algorithm 13 Calculating Daily Volatility of Security Returns Sampled Using
Metropolis-Hastings Algorithm
Require: End-of-day prices for S&P 500 from 2000 to 2024.
1: Objective: Sample S&P 500 returns from the joint distribution of returns and volatility.

Returns are assumed to belong to a Student-T distribution, and the evolution of volatility is
assumed to be governed by the GARCH(1,1) model.

2: Calculate daily returns, five-day volatility, and lagged volatility.
3: Fit the GARCH(1,1) model to the training data.
4: Use the Metropolis-Hastings algorithm to sample from the joint distribution of returns and

volatility. The joint distribution is shown in Equation 6-46.

P(x, σ 2) =
	

(
ν+1
2

)
√

πν	
(

ν
2

)
(
1 + (x − μ)2

ν

)− ν+1
2

× 1√
2π

exp

(
−σ(t)2 − β0 − β1x(t − 1)2 β2σ(t − 1)2

2

)

where
ν

ν − 2
= σ 2

(6-46)

5: For testing, predict the next period’s volatility using the GARCH(1,1) model.
6: Use the Metropolis-Hastings sampler that has reached steady state to sample from the joint

distribution to sample returns. Compute the empirical volatility.
7: Plot the three volatilities.

The code for fitting the model and sample from joint probability density is shown
in Listing 6-3.
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Listing 6-3. Computing Empirical Volatility of S&P 500 Returns Using Metropolis-Hastings
Algorithm

1 import numpy as np
2 import pandas as pd
3 import os
4 import logging
5 from abc import ABC, abstractmethod
6 import statsmodels . api as sm
7 from statsmodels .base .model import GenericLikelihoodModel
8 from scipy import stats
9 import matplotlib . pyplot as plt

10

11 logging . basicConfig ( level =logging.DEBUG)
12

13

14 class MetropolisHastings (ABC):
15 def __init__ ( self , burnIn=1000):
16 self . logger = logging .getLogger( self . __class__ .__name__)
17 self . burnIn = burnIn
18

19 @abstractmethod
20 def sampleFromProposalDensity(self , state0 ) :
21 raise NotImplementedError("Base class needs to implement")
22

23 @abstractmethod
24 def proposalDensity ( self , state0 , state1 ) :
25 raise NotImplementedError("Base class needs to implement")
26

27 @abstractmethod
28 def targetProb ( self , state , params):
29 raise NotImplementedError("Base class needs to implement")
30

31 def sample( self , N, initial , params, burnIn=None):
32 if burnIn is None:
33 burnIn = self . burnIn
34 samples = np.zeros (N, dtype=np. float64 )
35 state0 = initial
36 i = 0
37 while i < burnIn + N:
38 state = self .sampleFromProposalDensity(state0 )
39 fac1 = self . proposalDensity ( state , state0 ) / self . proposalDensity ( state0 ,

state )
40 fac2 = self . targetProb ( state , params) / self . targetProb ( state0 , params)
41 acceptanceProb = min(fac1 ∗ fac2 , 1)
42 u = np.random.random(1)
43 if u <= acceptanceProb:
44 state0 = state
45 if i >= burnIn:
46 samples[ i − burnIn] = state0
47 i += 1
48

49 return samples
50
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51

52 class Garch11Model(GenericLikelihoodModel):
53 def __init__ ( self , endog, exog):
54 super () . __init__ (endog=endog, exog=exog)
55 self .endog = endog
56 self .exog = sm.add_constant(exog, has_constant="add")
57 assert self .exog.shape[1] == 3
58 self . parameters = np.random.random(3)
59

60 def loglikeobs ( self , params):
61 pred = np.einsum(" ij , j−>i", self .exog, params)
62 return np.sum( stats .norm.logpdf(pred , self .endog, 1))
63

64 def fit ( self , ∗∗kwargs):
65 return super () . fit ( self . parameters , method="bfgs")
66

67 def predict ( self , exog):
68 exog = sm.add_constant(exog, has_constant="add")
69 return np.einsum(" ij , j−>i", exog, self . parameters )
70

71

72 class SP500ReturnPosterior(MetropolisHastings ) :
73 PRICE_COL = "Close"
74 PERIOD = 5
75

76 def __init__ ( self , dirname, security , trainTestRatio =0.9) :
77 super () . __init__ ()
78 self . logger = logging .getLogger( self . __class__ .__name__)
79 self .dirname = dirname
80 self . df = pd.read_csv(os . path . join (dirname, f"{ security }.csv") , parse_dates =["

Date"])
81 self . trainTestRatio = trainTestRatio
82 self . ntraining = int ( self . df .shape[0] ∗ trainTestRatio )
83 self .garchModel = None
84 self .calculateEndogExogVars()
85 self . volatForProb = None
86

87 def calculateEndogExogVars( self ) :
88 price = self . df . loc [:, self .PRICE_COL].values
89 returns = price [1:] / price [0:−1] − 1
90 self . df . loc [:, " returns "] = 0
91 self . df . loc [1:, " returns "] = returns
92 self . df . loc [:, " returns_square "] = self . df . loc [:, " returns "] ∗∗ 2
93 self . df . loc [:, " volat "] = 0
94 self . df . loc [:, " lagged_volat "] = 0
95 sumsq = np.sum(returns [0: self .PERIOD] ∗∗ 2)
96 for i in range( self .PERIOD, self.df .shape[0]−1, 1) :
97 self . df . loc [ i , " volat "] = sumsq / self .PERIOD
98 self . df . loc [ i+1, " lagged_volat "] = self . df . loc [ i , " volat "]
99 sumsq += returns [ i ] ∗ returns [ i ] − returns [ i − self .PERIOD] ∗ returns[ i −

self .PERIOD]
100

101 def fitGarch ( self ) :
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102 endog = self . df . loc [ self .PERIOD+1:self.ntraining , " volat " ]. values
103 exog = self . df . loc [ self .PERIOD+1:self.ntraining , [" returns_square " , "

lagged_volat " ]]. values
104

105 self .garchModel = Garch11Model(endog=endog, exog=exog)
106 res = self .garchModel. fit ()
107 self . logger . info ( res .summary())
108 self .garchModel.parameters = res .params
109 self . volatForProb = res .params[0] / (1 − res .params[2])
110

111 def fitMHSampler(self ) :
112 state = self . df . loc [ self . ntraining , " returns "]
113 mu = np.mean(self . df . loc [ self . ntraining − self .PERIOD:self. ntraining , " returns "

]. values )
114 volat = self . df . loc [ self . ntraining , " volat "]
115 params = (mu, volat )
116 self .sample(1, state , params)
117

118 def fit ( self ) :
119 self . fitGarch ()
120 self .fitMHSampler()
121

122 def sampleFromProposalDensity(self , state0 ) :
123 return np.random.normal(size=1, loc=state0 , scale=self . volatForProb )
124

125 def proposalDensity ( self , state0 , state1 ) :
126 return stats .norm.pdf( state0 − state1 , 0, 1)
127

128 def targetProb ( self , state , params):
129 mu, volat = params
130 nu = 2 ∗ volat / (1 − volat )
131 return (1 + ( state − mu)∗∗2/nu) ∗∗ (−(nu+1)/2) ∗ stats .norm.pdf( state , mu, 1)
132

133 def test ( self ) :
134 exog = self . df . loc [ self . ntraining :, [" returns_square " , " lagged_volat " ]]. values
135 actual = self . df . loc [ self . ntraining :, " volat " ]. values
136 predictedVol = self .garchModel. predict (exog)
137 sampledVol = np.zeros ( self . df .shape[0]−1−self. ntraining , dtype=np. float64 )
138 x = self . df . loc [ self . ntraining :, "Date" ]. values
139

140 for i in range( self . ntraining , self . df .shape[0]−1, 1) :
141 vol = predictedVol [ i−self . ntraining ]
142 self . volatForProb = self . df . loc [ i , " lagged_volat "]
143 mu = np.mean(self . df . loc [ i−self .PERIOD:i, " returns " ]. values )
144 initial = self . df . loc [ i , " returns "]
145 params = (mu, vol)
146 returns = self .sample(20, initial , params, burnIn=0)
147 sampledVol[i−self . ntraining ] = np. std ( returns )
148

149 plt . figure ( figsize =(10, 10))
150 plt . plot (x[0:−1], sampledVol, label ="Sampled")
151 plt . plot (x[0:−1], predictedVol [0:−1], label ="GARCH(1,1)")
152 plt . plot (x[0:−1], actual [0:−1], label ="Empirical")
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153 plt . grid ()
154 plt . legend ()
155 plt . xlabel ("Date")
156 plt . ylabel ("Daily Volatility ")
157 plt . savefig (os . path . join ( self .dirname, "mcmc_variance.jpeg") ,
158 dpi=500)
159 plt .show()
160

161

162 if __name__ == "__main__":
163 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
164 posterior = SP500ReturnPosterior(dirname, "SPY")
165 np.random.seed(32)
166 posterior . fit ()
167 posterior . test ()

The plot produced by the code in Listing 6-3 is shown in Figure 6-2.

Figure 6-2. Comparison of Volatility of S&P 500 Returns Obtained Using MCMC Algorithm,
GARCH(1, 1) Model, and Empirically Observed Volatility
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As seen from Figure 6-2, bootstrap volatility from the Metropolis-Hastings
algorithm spikes more than GARCH(1,1) predicted volatility during periods of
market gyrations and tracks the GARCH(1,1) volatility closely during periods of
market calm. The Student-T distribution has greater probability density in the tails
compared with the normal distribution and enables the MCMC sampler to produce
values with higher volatility than the GARCH(1,1) model.

6.5 Kalman Filter

The Kalman filter is a method for updating our beliefs about the value of a
hidden or latent (unobservable) variable given noisy observations of another variable
dependent on the latent variable. The filter has some similarities with the Bayesian
posterior distribution, but is specific to the Gaussian distribution for noise terms. The
term “filter” connotes removing or alleviating the impact of noise. If all errors are
Gaussian and the model is linear in its evolution of latent state and the dependence of
observables on latent state, it can be shown that the Kalman filter produces estimates
of latent variables with minimum mean-square error. This assertion will be proven
later.

Let us represent latent variables at time t by vector X(t). This could be the state
of a dynamic system that we do not observe directly. Let us represent the governing
equation for the evolution of hidden state by 6-47. F(t) is a known matrix that may
evolve as a function of time. U(t) represents known exogenous variables whose
measurement entails no error. Matrix G(t) is likewise known a priori. The error
term ex(t) is uncorrelated with exogenous variables X(t − 1). It follows a Gaussian
distribution with zero mean and a known variance-covariance matrix, Q(t).

X(t) = F(t − 1)X(t − 1) + G(t − 1)U(t − 1) + ex(t)

ex(t) ∼ N (0,Q(t))
(6-47)

We record noisy observations of a variable Z(t) at each time step t . This variable
is dependent on contemporaneous latent state, i.e., the latent state X(t) at the
same time step. This is represented in Equation 6-48, where H(t) is a known,
possibly time-dependent matrix and ez(t) is the error term that follows a Gaussian
distribution with zero mean and a known variance-covariance matrix, R(t). The
error term is uncorrelated with exogenous variables X(t).

Z(t) = H(t)X(t) + ez(t)

ez(t) ∼ N (0,R(t))
(6-48)

A Kalman filter is used to determine the evolution of the latent variable X(t)

as observations Z(t) become available. It formulates an expression for the latent
variable at time step t before and after the observations at time step t are known.
This iterative procedure of moving from one time step to the next and updating our
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predictions of the latent variable once observations for Z(t) are available is shown
in pseudo-code 14. Superscript T denotes matrix transpose.

Algorithm 14 Kalman-Filter Iterative Procedure for Predicting Latent Variable
Require: 1. Exogenous variable U(t) for all time steps.

2. Matrix F(t) and G(t) governing the evolution of latent variable X(t) for all time steps.
3. Matrix H(t) describing the dependence of observation Z(t) on the latent variable for all

time steps.
4. Variance-covariance matrices of error terms,Q(t) andR(t), as described in Equations 6-47

and 6-48. If the matrices are a function of time, these are required for all time steps.
5. Initial value of latent state X(0).
6. Initial variance-covariance matrix of latent variable X(0). Denote this as P(0).

1: Set t = 0.
2: Set X(0|0) = X(0).
3: Set P(0|0) = P(0)
4: for t = 1, 2, · · · , do
5: Predict the value of latent state X(t |t − 1) ex-ante, i.e., without knowing the value of

observation Z(t) at time step t . This prediction is denoted as X̂(t |t − 1) because it uses
observations before time t . Use Equation 6-49.

X̂(t |t − 1) = F(t − 1)X̂(t − 1|t − 1) + G(t − 1)U(t − 1) (6-49)

6: Predict the observation Ẑ(t |t − 1) using Equation 6-50.

Ẑ(t |t − 1) = H(t)X̂(t |t − 1) (6-50)

7: Calculate the variance-covariance matrix of the latent variable, P(t |t − 1), using Equation
6-51.

P(t |t − 1) = F(t − 1)P(t − 1|t − 1)F(t − 1)T + Q(t) (6-51)

8: Calculate the variance-covariance matrix of observations, S(t |t − 1), using Equation 6-52.

S(t) = H(t)P(t |t − 1)H(t)T + R(t) (6-52)

Let us now look at the derivation of the expressions used in the Kalman filter in
order to comprehend how it works.

The expression for the variance-covariance matrix of a latent variable, P(t |t −1),

can be obtained by writing the expression of E

[(
X̂(t |t − 1) − X(t)

)T (
X̂(t |t − 1)

− X(t)
)]

, as shown in Equation 6-57.
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9: Calculate Kalman gain K(t) using Equation 6-53.

K(t) = P(t |t − 1)H(t)S(t)−1 (6-53)

10: Update the latent state variance-covariance matrix P(t |t) using Equation 6-54.

P(t |t) = P(t |t − 1) − K(t)S(t)K(t)−1

= (I − K(t)H(t))P(t |t − 1)
(6-54)

11: Observation becomes available as Z(t) for time step t .
12: Calculate the observation error using Equation 6-55.

ez(t) = Z(t) − Ẑ(t |t − 1) (6-55)

13: Update the prediction of latent state,X(t |t), using Equation 6-56. This prediction is known
as ex-post prediction because it uses the observation Z(t).

X̂(t |t) = X̂(t |t − 1) + K(t)ez(t) (6-56)

14: end for

P(t |t − 1) = E

[(
X̂(t |t − 1) − X(t)

)T (
X̂(t |t − 1) − X(t)

)]

X̂(t |t − 1) = F(t − 1)X̂(t − 1|t − 1) + G(t − 1)U(t − 1)

X(t) = F(t − 1)X(t − 1) + G(t − 1)U(t − 1) + ex(t)

Substituting the expressions, we get

P(t |t − 1) = F(t − 1)E

[(
X̂(t |t − 1) − X(t − 1)

)T
]
F(t − 1)T +

E
[
ex(t)T ex(t)

]

Because ex is uncorrelated with latent variables

P(t |t − 1) = F(t − 1)P(t − 1|t − 1)F(t − 1)T + Q(t)

(6-57)

Let us define the Kalman gain as the coefficient of the observation-error term
used for updating our estimate of the latent variable when observation at time t is
available. This is shown in Equation 6-58.

X̂(t |t) = X̂(t |t − 1) + K(t)
(
Z(t) − Ẑ(t |t − 1)

)

K(t) is called Kalman gain
(6-58)
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Now let us write an expression for the variance-covariance matrix of the latent
variable at time step t when observation for time step t is known, i.e., P(t |t). This is
shown in Equation 6-59.

P(t |t) = E

[(
X̂(t |t) − X(t)

)T (
X̂(t |t) − X(t)

)]

Use the definition of Kalman gain

P(t |t) = E

[(
X̂(t |t − 1) + K(t)

(
Z(t) − Ẑ(t |t − 1)

)
− X(t)

)T

(
X̂(t |t − 1) + K(t)

(
Z(t) − Ẑ(t |t − 1)

)
− X(t)

)]

Substitute Ẑ(t |t − 1) = H(t)X̂(t |t − 1)

P(t |t) = E

[(
X̂(t |t − 1) + K(t)

(
Z(t) − ˆH(t)X(t |t − 1)

)
− X(t)

)T

(
H(t)X̂(t |t − 1) + K(t)

(
Z(t) − Ẑ(t |t − 1)

)
− X(t)

)]

(6-59)

We also know that Z(t) = H(t)X(t) + ez(t) from Equation 6-48. Substituting it
in Equation 6-59, we get Equation 6-60.

P(t |t) = E

[(
X̂(t |t − 1) + K(t)

(
H(t)X(t) + ez(t) − H(t)X̂(t |t − 1)

)
− X(t)

)T

(
H(t)X̂(t |t − 1) + K(t)

(
H(t)X(t) + ez(t) − Ẑ(t |t − 1)

)
− X(t)

)]

= (I − K(t)H(t)) E

[(
X(t) − X̂(t |t − 1)

) (
X(t) − X̂(t |t − 1)

)T
]

(I − K(t)H(t))T + K(t)E
[
ez(t)ez(t)T

]
K(t)T

= (I − K(t)H(t))P(t |t − 1) (I − K(t)H(t))T + K(t)R(t)K(t)T

(6-60)

The Kalman filter seeks to minimize the mean square error of the posterior

estimate for the latent variable. It minimizes the term
∥∥∥X(t) − X̂(t |t)

∥∥∥2. This is

the trace of variance-covariance matrix P(t |t), whose expression was derived in
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Equation 6-60. We can write the trace of variance-covariance matrix P(t |t) as shown
in Equation 6-61. The last step uses the definition of S(t) shown in Equation 6-52.

trace(P(t |t)) = P(t |t − 1) − K(t)H(t)P(t |t − 1)T − P(t |t − 1)H(t)T K(t)T +
K(t)

(
H(t)P(t |t − 1)H(t)T + R(t)

)
K(t)T

= P(t |t − 1) − K(t)H(t)P(t |t − 1)T − P(t |t − 1)H(t)T K(t)T +
K(t)S(t)K(t)T

(6-61)
Finally, differentiating the expression for trace in Equation 6-61 with respect to

K(t) gives us the value of the Kalman gain, as shown in Equation 6-62.

∂trace(P(t |t))
∂K(t)

= 0

�⇒ −2 (H(t)P(t |t − 1)) + 2K(t)S(t) = 0

�⇒ K(t) = P(t |t − 1)H(t)T S(t)−1

(6-62)



7Tobit Regression

Tobit regression – also known as censored regression – refers to the regression
methodology when observations are truncated at a threshold value. Truncation can
be applied at a lower and, optionally, at an upper threshold. Applying ordinary linear
regression methodology to truncated data can lead to biased parameter estimates that
give poor in-sample and out-of-sample predictions. This occurs because of the non-
linear shape of observable variables due to truncation. Censored regression handles
this complexity by accounting for truncation of observations and modeling the non-
truncated part of data separately.

In order to motivate the necessity of accounting for truncation, let us consider an
unobservable variable y∗ dependent on a vector of exogenous variables X according
to the relation shown in Equation 7-1. β is a column vector of coefficients. For
including an intercept, we can append a column containing one to matrix X.

y∗ = Xβ + ε

ε ∼ N(0, σ 2)
(7-1)

y∗ is an unobservable or latent variable; we only observe y that is related to y∗
according to Equation 7-2.

y =
{

y∗ if y∗ > 0

0 if y∗ ≤ 0
(7-2)

Let us simulate a few data points from the distribution and plot them, as shown
in Figure 7-1. If we attempt to fit a simple linear regression model to this data, the
estimated coefficient values will be biased and inconsistent. This can be seen from
the output in Listing 7-1. The underlying (latent) process y∗ = 1 + 3x + ε, where
ε ∼ N(0, 1) is drawn from a normal distribution with mean 0 and variance 1. The
process is shown in Equation 7-3. The observable variable is y and is related to y∗
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Figure 7-1. Scatter Plot of Left-Censored Data and OLS Model Fit

according to Equation 7-2. Discarding the points with y = 0 loses information. OLS
obtains the coefficients of fitted line as yOLS fitted = 4.2572 + 1.6470x, as seen in
Listing 7-1.

y∗ = 1 + 3x + ε

ε ∼ N(0, 1)

y =
{

y∗ if y∗ > 0

0 if y∗ ≤ 0

(7-3)



7 Tobit Regression 201

Listing 7-1. Left-Censored Data Fitted Using OLS Model

1 INFO:CensoredData: OLS Regression Results
2 =============================================================
3 Dep. Variable : y R−squared: 0.813
4 Model: OLS Adj. R−squared: 0.812
5 Method: Least Squares F− statistic : 4325.
6 Date: Wed, 07 Aug 2024 Prob (F− statistic ) 0.00
7 Time: 22:28:34 Log−Likelihood: −2244.8
8 No. Observations:1000 AIC: 4494.
9 Df Residuals : 998 BIC: 4503.

10 Df Model: 1
11 Covariance Type: nonrobust
12 =============================================================
13 coef std err t P>| t | [0.025 0.975]
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 const 4.2572 0.072 58.885 0.000 4.115 4.399
16 x1 1.6470 0.025 65.765 0.000 1.598 1.696
17 =============================================================
18 Omnibus: 331.542 Durbin−Watson: 0.219
19 Prob(Omnibus): 0.000 Jarque−Bera (JB): 48.684
20 Skew: −0.007 Prob(JB): 2.68e−11
21 Kurtosis : 1.919 Cond. No. 2.89
22 =============================================================
23

24 Notes:
25 [1] Standard Errors assume that the covariance matrix of the errors is correctly

specified .

The code for performing the spurious OLS regression and plotting the results is
shown in Listing 7-2.

Listing 7-2. Fitting Censored Data Using OLS Produces Biased and Inconsistent Estimates

1 import numpy as np
2 import statsmodels . api as sm
3 import logging
4 from matplotlib . pyplot import cm
5 import matplotlib . pyplot as plt
6 import os
7

8

9 logging . basicConfig ( level =logging.DEBUG)
10

11

12 class CensoredData(object ) :
13 def __init__ ( self , dirname, coeff =3, variance =1, l1=0.0) :
14 self . logger = logging .getLogger( self . __class__ .__name__)
15 x = np.arange(−5, 5, 0.01)
16 sdev = np. sqrt ( variance )
17 epsilon = sdev ∗ np.random.standard_normal(x.shape [0])
18 ystar = 1 + coeff∗x + epsilon
19 y = np.where(ystar < l1 , l1 , ystar )
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20 self .x = x
21 self .y = y
22 self .dirname = dirname
23

24 def fitOLS( self ) :
25 x = sm.add_constant( self .x [:, np.newaxis ], has_constant="add")
26 olsModel = sm.OLS(self.y, x) . fit ()
27 self . logger . info (olsModel.summary())
28 predicted = olsModel. predict (x)
29

30 fig , axs = plt . subplots (1, 1, figsize =(10, 10))
31 colors = cm.rainbow(np. linspace (0, 1, 2))
32 axs . scatter ( self .x, self .y, c=colors [0], label ="Observed")
33 axs . scatter ( self .x, predicted , c=colors [1], label ="OLS Predicted")
34 axs . grid ()
35 axs . legend ()
36 axs . set_xlabel ("X")
37 axs . set_ylabel ("y")
38 axs . set ( title ="Spurious Fitting of Censored Data Using OLS")
39 fig . tight_layout ()
40 plt . savefig (os . path . join ( self .dirname, f"plot_{ self . __class__ .__name__}.jpeg"),
41 dpi=500)
42 plt .show()
43

44

45 if __name__ == "__main__":
46 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
47 censoredData = CensoredData(dirname)
48 censoredData.fitOLS()

Tobit regression is used to fit censored data. In the example sketched earlier, the
data was censored or cut off at a lower limit. This is called left-censoring. It can
additionally have right-censoring, where we apply an upper limit and censor the
values above that limit.

7.1 Problem Formulation

Let us formulate the problem of censored linear regression in a generic framework.
Equation 7-1 describes the dynamics of a linear process. We can generalize the
censoring equation to the one shown in Equation 7-4.

y =

⎧⎪⎪⎨
⎪⎪⎩

L1 if y∗ < L1

y∗ if L1 ≤ y∗ < L2

L2 if y∗ ≥ L2

(7-4)
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We can write the probability density of observing a left-censored value y = L1
as shown in Equation 7-5.

P (y = L1) = P
(
y∗ < L1

)

= P (Xβ + ε < L1)

= P (ε < L1 − Xβ)

= �

(
L1 − Xβ

σ

)
because ε ∼ N(0, σ 2)

� denotes the CDF of standard normal distribution

�(z) = 1√
2π

∫ z

−∞
exp

(
−x2

2

)
dx

(7-5)

Similarly, we can write the probability of observing a right-censored value y =
L2 as shown in Equation 7-6.

P (y = L2) = P
(
y∗ > L2

)

= P (Xβ + ε > L2)

= P (ε > L2 − Xβ)

= 1 − �

(
L2 − Xβ

σ

)
because ε ∼ N(0, σ 2)

= �

(
−L2 − Xβ

σ

)

� denotes the CDF of standard normal distribution

(7-6)

For a non-censored value of y, probability density is shown in Equation 7-7. This
corresponds to the usual probability distribution of a data point drawn from a normal
distribution.

P
(
y = y∗) = P

(
Xβ + ε = y∗) if L1 ≤ y∗ < L2

= P
(
ε = y∗ − Xβ

)

= P

(
ε

σ
= y∗ − Xβ

σ

)

= 1

σ
φ

(
y∗ − Xβ

σ

)
(7-7)
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φ (x) = 1√
2π

exp

(
(y∗ − Xβ)2

2

)

φ denotes the PDF of standard normal distribution

Using Equations 7-5, 7-6, and 7-7, we can write the likelihood expression for the
data, as shown in Equation 7-8.

L(β) =
N∏

i=1

(
�

(
L1 − Xiβ

σ

))I (yi=L1)
(

1

σ
φ

(
yi − Xiβ

σ

))I (L1≤yi<L2)

(
�

(
−L2 − Xiβ

σ

))I (yi≥L2)

I (z) =
{

0 if z is false

1 if z is true

(7-8)

Using Equation 7-8, one can write the log-likelihood function by taking the
logarithm. Differentiation with respect to model parameters β and setting it to zero
to get the maxima of likelihood yields the value of parameters β using the method
of maximum likelihood.

7.2 Marginal Effects

Marginal effects, also known as partial effects, measure the impact of change of an
exogenous variable on an endogenous variable, ∂y

∂Xi
. In a vanilla linear regression

model, the marginal effect of exogenous variable Xi is simply the coefficient βi . In
Tobit (censored) regression, that is no longer the case.

Before calculating marginal effects, we must estimate two values below that
frequently crop up in Tobit regression.

1. E
[
y|L1 ≤ y∗ < L2

]
: This is the expected value of the endogenous variable

conditional on the condition L1 ≤ y∗ < L2.
2. E [y]: This is the unconditional expected value of the endogenous variable.

Let us first calculate E
[
y|L1 ≤ y∗ < L2

]
. This region corresponds to values

where y = y∗, with a normal distribution of y − Xβ. This expression is derived in
Equations 7-9, 7-10, and 7-11.

E
[
y|L1 ≤ y∗ < L2

] = E [Xβ + ε|L1 ≤ Xβ + ε < L2]

= E

[
Xβ + ε|L1 − Xβ

σ
≤ ε

σ
<

L2 − Xβ

σ

] (7-9)
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P

(
L1 − Xβ

σ
≤ ε

σ
<

L2 − Xβ

σ

)
= �

(
L2 − Xβ

σ

)
− �

(
L1 − Xβ

σ

)

≡ F

(7-10)

E
[
y|L1 ≤ y∗ < L2

] = 1

F

∫ high

low

(
Xβ

σ
+ z

)
φ (z) dz

where z = ε

σ

low = L1 − Xβ

σ
and high = L2 − Xβ

σ

∴ E
[
y|L1 ≤ y∗ < L2

] = 1

F

(
XβF + σ

∫ high

low
zφ(z)dz

)

= Xβ + σ

F

(
φ

(
L2 − Xβ

σ

)
− φ

(
L1 − Xβ

σ

))

where F ≡ �

(
L2 − Xβ

σ

)
− �

(
L1 − Xβ

σ

)

(7-11)

Equation 7-11 shows why ignoring the censored values and fitting a linear
model gives biased and inconsistent results. E

[
y|L1 ≤ y∗ < L2

] = Xβ +
σ
F

(
φ

(
L2−Xβ

σ

)
− φ

(
L1−Xβ

σ

))
, whereas a naive linear regression would give

E
[
y|L1 ≤ y∗ < L2

]
= Xβ.

For the case where we have just left-censoring of data, we can simplify the
expression in Equation 7-11 to the one shown in Equation 7-12.

E
[
y|L1 ≤ y∗] = Xβ + σ

−φ
(

L1−Xβ
σ

)

1 − �
(

L1−Xβ
σ

)

= Xβ − σ
−φ

(
−L1−Xβ

σ

)

�
(
−L1−Xβ

σ

)

= Xβ − σλ

(
−L1 − Xβ

σ

)

For left-censored data (7-12)

λ (z) = φ (z)

� (z)

λ (z) is called inverse Mills-ratio
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φ (z) = 1√
2π

exp

(
z2

2

)

�(z) = 1√
2π

∫ z

−∞
exp

(
−x2

2

)
dx

In Equation 7-12, λ
(
−L1−Xβ

σ

)
is called inverse Mills ratio and is defined as

the ratio of the probability density function (φ) to the cumulative probability density
function (�) of a standard normal distribution.

The expression for the unconditional expected value of endogenous variable y

can be derived by considering the censored areas and uncensored areas separately,
as shown in Equation 7-13.

E [y] = E [y|y ∈ left censored area] P (y ∈ left censored area)+
E [y|y ∈ un-censored area] P (y ∈ un-censored area)+
E

[
y|y ∈ right censored area

]
P (y ∈ right censored area) +

where P (y ∈ left censored area) = �

(
L1 − Xβ

σ

)

P (y ∈ un-censored area) = �

(
L2 − Xβ

σ

)
− �

(
L1 − Xβ

σ

)

P (y ∈ right censored area) = 1 − �

(
L2 − Xβ

σ

)
= �

(
−L2 − Xβ

σ

)

E [y] = L1�

(
L1 − Xβ

σ

)
+ XβF + σ

(
φ

(
L2 − Xβ

σ

)
− φ

(
L1 − Xβ

σ

))
+

L2�

(
−L2 − Xβ

σ

)

where F = �

(
L2 − Xβ

σ

)
− �

(
L1 − Xβ

σ

)

(7-13)

For the special case where we have only left-censoring of data and the left-
censoring value for y is L1 = 0, we can simplify Equation 7-13 to Equation 7-14.

E [y] = �

(
Xβ

σ

)
Xβ − σφ

(
Xβ

σ

)

For the special case of left-censoring only and

left-censored value for y, L1 = 0

(7-14)
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In order to calculate the marginal effects, we can differentiate the expression for
E [y] in Equation 7-13 with respect to model coefficients β. For the special case of
left-censoring only with a left-censored value of zero, we can use Equation 7-14.

7.3 Tobit-I Implementation

In this section, let us look at the code for fitting a Tobit-I model using a maximum
likelihood method in order to illustrate the mathematical concepts presented earlier.
Tobit models are not currently available in the statsmodels library, so let us write
our own implementation. Due to the reusable nature of this implementation, we will
implement it as a modular and reusable library with a unittest to test it.

Let us use the earlier example of fitting a Tobit model to the censored data in
Equation 7-3. Summary statistics of fitting the model are shown in Listing 7-3.

As seen from the output, the Tobit-I model correctly deduces the parameters of
the model as y∗ = 0.9546 + 2.9868x, with the variance of error 0.9983. This is
close to the original data generation process in Equation 7-3. The implementation
uses the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method to find the minimum
of the negative log-likelihood function. Statistics from minimization are shown
in Listing 7-4, confirming that the process finds a minimum. For numerical
optimization applied to multi-modal functions, it is important to verify that iterations
terminate successfully.

Listing 7-3. Left-Censored Data Fitted Using Tobit-1 Model

1 INFO:TobitTest: Tobit1 Results
2 ==============================================================
3 Dep. Variable : y Log−Likelihood: −645.41
4 Model: Tobit1 AIC: 1291.
5 Method: Maximum Likelihood BIC: 1291.
6 Date: Thu, 08 Aug 2024
7 Time: 23:17:26
8 No. Observations : 900
9 Df Residuals : 899

10 Df Model: 0
11 ==============================================================
12 coef std err z P>|z | [0.025 0.975]
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 x1 2.9868 0.034 86.581 0.000 2.919 3.054
15 par0 0.9546 0.074 12.853 0.000 0.809 1.100
16 par1 0.9983 0.033 30.000 0.000 0.933 1.064
17 ==============================================================
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Listing 7-4. Minimization of Tobit-I Negative Log-Likelihood

1 Optimization terminated successfully .
2 Current function value : 0.717120
3 Iterations : 17
4 Function evaluations : 20
5 Gradient evaluations : 20

Finally, we can compare the root-mean-square errors between predicted and
actual values on the test dataset to compare the fit produced by Tobit-I and OLS
models. As seen from the output, RMSE for the Tobit-I model is 1.143183, while
for OLS is 4.785384, confirming that the Tobit-I model produces a better fit.

The code for implementing and testing the Tobit-I model is presented in
Listing 7-5.

Listing 7-5. Implementation of Tobit-1 Model

1 from statsmodels .base .model import GenericLikelihoodModel
2 import numpy as np
3 import statsmodels . api as sm
4 from scipy import stats
5

6

7 class Tobit1 (GenericLikelihoodModel):
8 def __init__ ( self , endog, exog, low=None, high=None, add_constant=True, method="

bfgs"):
9 super () . __init__ (endog=endog, exog=exog)

10 assert (low is not None) or (high is not None), "both low and high cannot be
None"

11 if (low is not None) and (high is not None):
12 assert low < high , "low must be strictly less than high"
13 self . low = low
14 self .high = high
15 self .endog = endog
16 self .exog = exog
17 self . add_constant = add_constant
18 if add_constant :
19 self .exog = sm.add_constant(exog, has_constant="add", prepend=False)
20 self . parameters = np.zeros ( self .exog.shape[1] + 1, dtype=np. float64 )
21 self . parameters[−1] = 1.
22 self .method = method
23

24 def loglikeobs ( self , params):
25 error = self .endog − ( self .exog @ params[:−1])
26 ll = 0
27 condition = np.ones( self .endog.shape [0], dtype=bool)
28 if self . low is not None:
29 ll += np.sum( stats .norm.logcdf( error [ self .endog <= self . low], self . low,

params[−1]))
30 condition [ self .endog <= self . low] = False
31 if self .high is not None:
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32 ll += np.sum( stats .norm.logcdf(−error[ self .endog > self .high ], self .high ,
params[−1]))

33 condition [ self .endog > self .high] = False
34 ll += np.sum( stats .norm.logpdf( error [ condition ], 0, params[−1]))
35 return ll
36

37 def fit ( self , ∗∗kwargs):
38 if "method" in kwargs:
39 kwargs.pop("method")
40 return super () . fit ( self . parameters , method=self.method, ∗∗kwargs)
41

42 def predict ( self , params, exog, ∗args , ∗∗kwargs):
43 if self . add_constant :
44 exog = sm.add_constant(exog, has_constant="add", prepend=False)
45 pred = np.einsum(" ij , j−>i", exog, params[0:−1])
46 if self . low is not None:
47 pred = np.where(pred <= self . low, self . low, pred)
48 if self .high is not None:
49 pred = np.where(pred > self .high , self .high , pred)
50 return pred
51

52 # unittest below
53

54 import unittest
55 import logging
56 import statsmodels . api as sm
57

58 logging . basicConfig ( level =logging.DEBUG)
59

60

61 class TobitTest ( unittest .TestCase) :
62 def setUp( self ) −> None:
63 self . logger = logging .getLogger( self . __class__ .__name__)
64 x = np.arange(−5, 5, 0.01)
65 np.random.seed(1024)
66 coeff = 3
67 variance = 1
68 l1 = 0.0
69 sdev = np. sqrt ( variance )
70 epsilon = sdev ∗ np.random.standard_normal(x.shape [0])
71 ystar = 1 + coeff ∗ x + epsilon
72 y = np.where(ystar < l1 , l1 , ystar )
73 self .x = x
74 self .y = y
75 self . l1 = l1
76 self . tobit = None
77 self . trainTestRatio = 0.9
78

79 def test_regression ( self ) :
80 training = int ( self . trainTestRatio ∗ self .x.shape [0])
81 x = self .x[0: training , np.newaxis]
82 y = self .y[0: training ]
83 self . tobit = Tobit1 (y, x, low=self . l1 , add_constant=True)
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84

85 res = self . tobit . fit ()
86 self . logger . info ( res .summary())
87 self . assertIsNotNone( res )
88

89 exogTest = self .x[ training :]
90 testPred = self . tobit . predict ( res .params, exogTest)
91 actual = self .y[ training :]
92 diff = testPred − actual
93 mse1 = np. sqrt (np.mean(diff ∗ diff ) )
94

95 # fit OLS model
96 x = sm.add_constant( self .x[0: training , np.newaxis ], has_constant="add")
97 olsModel = sm.OLS(self.y[0: training ], x) . fit ()
98 testX = sm.add_constant( self .x[ training :, np.newaxis ], has_constant="add")
99 olsPred = olsModel. predict ( testX )

100 self . logger . info (olsModel.summary())
101 diff = olsPred − actual
102 mse2 = np. sqrt (np.mean(diff ∗ diff ) )
103 self . logger . info ("RMSE from tobit: %f, from OLS: %f", mse1, mse2)
104 self . assertLess (mse1, mse2)

Code Explanation
Let us do a code walk-through to understand the implementation of the Tobit-I
model as well as the unittest for verifying it:

1. Class Tobit1 implements the Tobit-I model. It uses GenericLikelihoodModel
from the statsmodels library as the base class. The base class defines methods
for calculating the parameter values by minimizing the negative log-likelihood
function. The base class requires the following two items from the subclass:

• Negative log-likelihood function with the signature loglikeobs(self, params).
• Initial values for parameters. This is provided as an argument to the loglikeobs

method above.

2. The constructor of derived class Tobit1 accepts the following arguments:

• An array of type numpy.ndarray containing endogenous or dependent
variables. This is a one-dimensional array with length equal to the number
of samples in the training dataset.

• A two-dimensional array of type numpy.ndarray containing exogenous or
independent variables. This array does not include a column containing one
for the intercept.

• Low threshold for censoring. This argument is optional. If provided, the
output variable is left-censored at this threshold.
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• High threshold for censoring. This argument is optional. If provided, the
output variable is right-censored at this threshold.

• add_constant boolean flag. If true, an intercept term is added to the regression
by appending a column of ones to the exogenous variable array.

• method: This is the name of numerical method used for minimizing the
negative log-likelihood function.

The constructor initializes an array of parameters equal to the number of exoge-
nous variables after including an additional one for the intercept, if requested,
and an additional parameter for the variance σ 2 of error ε.

3. The class provides an implementation of method loglikeobs for computing the
negative log-likelihood. As described earlier, this can be represented by the
analytical expression in Equation 7-15.

− log L(β) =
N∑

i=1

−I (yi = L1) log

(
�

(
L1 − Xiβ

σ

))

− I (L1 ≤ yi < L2) log

(
1

σ
φ

(
yi − Xiβ

σ

))

− I (yi ≥ L2) log

(
�

(
−L2 − Xiβ

σ

))

I (z) =
{

0 if z is false

1 if z is true

(7-15)

4. The fit method calls the base class method for fitting the model, passing the
initial value of parameters and numerical method used to minimize the negative
log-likelihood function as arguments.

5. The class has a method predict for predicting values using the fitted model. fit
must have been called before invocation of predict.

6. Now let us look at the unittest. The class TobitTest derives from base class
unittest.TestCase. The base class provides boilerplate code for running a suite
of tests and reporting results.

7. Method setUp sets the seed for the numpy library’s random number generation.
This is set for reproducibility of results. The method generates the data using the
data generation process defined in Equation 7-3. It also sets the train-test ratio to
0.9, implying that 90% of data will be used for training.

8. Method test_regression runs the unittest. It creates an object of class Tobit1 and
fits the model using the training dataset. It also uses an OLS model to fit the
training data. After fitting the two models, it uses the test dataset to evaluate their
relative performance. It computes the root-mean-square error of predicted and
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actual values and asserts that the RMSE value is smaller for the Tobit-I model as
compared with the OLS model.

7.4 Heteroskedasticity in Tobit-I Model

In Equation 7-1 formulating the Tobit-I model, we assumed that error terms have a
constant variance σ 2. In the presence of heteroskedasticity or changing variance,
we must treat σ 2 as a variable in the expression for maximum likelihood and
optimize it with respect to the variance parameter in addition to model coefficients.
In cases where heteroskedasticity is present, we hypothesize a parametric model for
variance, such as the GARCH model, and then maximize the likelihood expression
with respect to parameters in the parametric variance model, in addition to model
coefficients.

It should be noted that if heteroskedasticity is ignored when it is actually present,
we will get biased and inconsistent coefficient estimates from the Tobit-I model.
This is in contrast with linear regression using OLS where heteroskedasticity does
not impact the consistency of model coefficient estimates. It only makes OLS
inefficient. This occurs because the expression for E [y] in the Tobit-I model
(Equation 7-13) has a term that depends on σ , making model coefficient estimates
biased and inconsistent.

7.5 Tobit-II Model

The Tobit model considered in the previous section was a type-I model. The Tobit
type-I model is characterized by the fact that the latent variable y∗ decides both the
censoring of an observed variable and its censored value. In the type-I model, y was
censored if y∗ was above or below a threshold, and it also provided a value for y

in the non-censored area. The Tobit type-II model separates these two functions.
One latent variable y∗

1 determines when the observations will be censored, and
another latent variable y∗

2 provides the uncensored value. This is formulated in
Equation 7-16.

y =

⎧⎪⎪⎨
⎪⎪⎩

a1 if y∗
1 < L1

y∗
2 if L1 ≤ y∗

1 < L2

a2 if y∗
1 ≥ L2

y∗
1 = Xβ + ε1

y∗
2 = Xγ + ε2

ε1 ∼ N(0, σ 2
1 )

ε2 ∼ N(0, σ 2
2 )

(7-16)



7.5 Tobit-II Model 213

In econometrics, the Tobit type-II model is known as the Heckman two-step
model. This is because the Heckman model involves a two-step regression. The
first step is probit regression (GLM with Poisson distribution) that decides if the
observation will be censored. Let us say this step has model parameters β, as shown
in Equation 7-16. The next step regresses the observation in an uncensored region
using another set of coefficients γ .

7.5.1 Fitting Heckman Two-StepModel

Let us fit the Tobit-II model using the Heckman two-step approach to predict the
aptitude score of students in a test. The data is available from the UCLA website
[48]. The data is right-censored at 800, which is the highest score that can be
obtained. There is also a lower threshold of 200, but in the dataset no student reaches
the lower threshold. Therefore, we cannot train a probit model for a lower threshold,
and we specify only an upper threshold for right-censoring.

The explanatory variables are student scores in reading and writing, along with a
categorical column indicating if a student is enrolled in “vocational,” “general,” or
“academic” disciplines.

The code for fitting the Heckman two-step model is shown in Listing 7-6.

Listing 7-6. Implementing and Testing Heckman Two-Step Model

1 import numpy as np
2 import logging
3 import statsmodels . api as sm
4 import pandas as pd
5 import os
6 import seaborn as sns
7 import matplotlib . pyplot as plt
8

9 logging . basicConfig ( level =logging.DEBUG)
10

11

12 class Heckman2StepModel(object):
13 """ Tobit−II (censored) regression model using Heckman 2−step approach """
14

15 def __init__ ( self , endog: np.ndarray , exog: np.ndarray , low=None, high=None,
16 include_constant =True, train_test_ratio =0.9, low_threshold =0.15,
17 high_threshold =0.15) :
18 """
19 Initialize the regression model
20 :param endog: y
21 :param exog: X
22 :param low: Low threshold for censoring
23 :param high: High threshold for censoring
24 :param include_constant :
25 :param train_test_ratio :
26 """
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27 assert (low is not None) or (high is not None), "both low and high cannot be
None"

28 if (low is not None) and (high is not None):
29 assert low < high , "low must be strictly less than high"
30 self . low = low
31 self .high = high
32 self . lowProbitModel = None
33 self .highProbitModel = None
34 self .olsModel = None
35 self .endog = endog
36 self .exog = exog
37 self . includeConstant = include_constant
38 self . trainTestRatio = train_test_ratio
39 self . lowThreshold = low_threshold
40 self .highThreshold = high_threshold
41 self . ntraining = int ( self . trainTestRatio ∗ self .endog.shape [0])
42 self . logger = logging .getLogger( self . __class__ .__name__)
43

44 def fitProbit ( self , endog, exog, threshold ) :
45 rows = np.where(endog >= threshold , 1, 0)
46 model = sm.Probit (rows, exog)
47 return model. fit ()
48

49 def fitOLS( self , endog, exog):
50 model = sm.OLS(endog, exog)
51 return model. fit ()
52

53 def fit ( self ) :
54 """
55 Fit the Heckman regression model to the data
56 """
57 ntraining = self . ntraining
58 exog = self .exog
59 if self . includeConstant :
60 exog = sm.add_constant( self .exog, has_constant="add")
61 olsFlag = np.ones( ntraining , dtype=bool)
62 if self . low is not None:
63 olsFlag [ self .endog[0: ntraining ] <= self . low] = False
64 self . lowProbitModel = self . fitProbit ( self .endog[0: ntraining ], exog[0:

ntraining , :], self . low)
65 if self .high is not None:
66 olsFlag [ self .endog[0: ntraining ] >= self .high] = False
67 self .highProbitModel = self . fitProbit ( self .endog[0: ntraining ], exog[0:

ntraining , :], self .high)
68 self .olsModel = self .fitOLS( self .endog[0: ntraining ][ olsFlag ], exog[0: ntraining ,

:][ olsFlag , :])
69

70 def predict ( self , exog: np.ndarray = None) −> np.ndarray:
71 """
72 Predict the output of the model using exogeneous variables as input .
73 :param exog: exogeneous variables (X)
74 : return : output value from the model (y)
75 """
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76 if exog is None:
77 exog = self .exog[ self . ntraining :, :]
78 if self . includeConstant :
79 exog = sm.add_constant(exog, has_constant="add")
80 result = np.zeros (exog.shape [0], dtype=np. float64 )
81 olsFlag = np.ones(exog.shape [0], dtype=bool)
82 if self . low is not None:
83 lowProb = self . lowProbitModel. predict (exog)
84 lowVals = lowProb < (1 − self . lowThreshold)
85 olsFlag [lowVals] = False
86 result [lowVals] = self . low
87 if self .high is not None:
88 highProb = self .highProbitModel. predict (exog)
89 highVals = (highProb > self .highThreshold)
90 olsFlag [highVals ] = False
91 result [highVals] = self .high
92 result [ olsFlag ] = self .olsModel. predict (exog[olsFlag , :])
93 return result
94

95 @staticmethod
96 def rmse(y1, y2):
97 return np. sqrt (np.mean((y1 − y2)∗∗2))
98

99

100 if __name__ == "__main__":
101 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
102 df = pd.read_csv(os . path . join (dirname, " student_scores .csv") )
103 df . loc [:, "prog_codes"] = df . loc [:, "prog" ]. astype ("category") . cat .codes
104 high = 800
105 y = df . loc [:, "apt" ]. values
106 X = df . loc [:, ["read" , "math","prog_codes" ]]. values
107 heckman = Heckman2StepModel(y, X, high=high)
108 heckman. fit ()
109 predicted = heckman.predict ()
110 actual = y[heckman.ntraining :]
111 rmse1 = Heckman2StepModel.rmse(actual, predicted )
112

113 # fit an OLS model
114 Xconst = sm.add_constant(X, has_constant="add")
115 ols = sm.OLS(y[0:heckman.ntraining], Xconst[0:heckman.ntraining , :])
116 ols = ols . fit ()
117 olsPred = ols . predict (Xconst[heckman.ntraining :, :])
118 rmse2 = Heckman2StepModel.rmse(actual, olsPred)
119

120 logging . info ("RMSE from Heckman model: %f, OLS model: %f", rmse1, rmse2)
121

122 # plot
123 predictors = ["Heckman"] ∗ predicted .shape[0] + ["OLS"] ∗ olsPred .shape[0] + ["

Actual"] ∗ actual .shape[0]
124 values = np. concatenate (( predicted , olsPred , actual ) , axis=0)
125 ids = df . loc [heckman.ntraining :, "id" ]. values
126 ids = np. concatenate (( ids , ids , ids ) )
127 df = pd.DataFrame({"Id": ids , "Aptitude Score": values , " Predictor " : predictors })
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128 sns . lineplot ( data=df, x="Id", y="Aptitude Score" , hue="Predictor ")
129 plt . legend( loc="upper left ")
130 plt . grid ()
131 plt . savefig (os . path . join (dirname, f"heckman_v_ols.jpeg") ,
132 dpi=500)
133 plt . show()

In order to assess its performance, we compare the root-mean-square difference
between predictions of the Heckman two-step model and actual aptitude score
against the difference between an OLS fitted linear regression model and actual
aptitude score using the test dataset that has not been used for training either models.
The RMSE value using the Heckman two-step approach is 60.35, which is lower
than that of the OLS model’s value 62.85. This shows that the Heckman two-step
model performs better on the test dataset. The plot of predictions from the two
models and actual aptitude scores is shown in Figure 7-2.

Code Explanation
Let us step through the code in Listing 7-6 to understand the implementation of the
model and the test for validation.

Figure 7-2. Comparison of Heckman Two-Step and OLS Models for Predicting Right-Censored
Aptitude Scores
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1. Class Heckman2StepModel implements the Tobit-II model. Its constructor in
method __init__ takes the following arguments:

• endog is a one-dimensional numpy array containing the dependent variable
(y).

• exog is a two-dimensional numpy array containing the independent vari-
ables. This array does not have a column of ones for an intercept.

• low threshold for left-censoring (optional).
• high threshold for right-censoring (optional).
• include_constant: A boolean flag indicating if an intercept should be added

to the regression.
• train_test_ratio: Proportion of the dataset to use for training the model.

Remaining data is used for testing.
• low_threshold: Threshold to use in testing to decide if the output is left-

censored. This is a model hyper-parameter. A probit model predicts the
probability that an endogenous variable is above the left-censoring value,
specified as a low argument. During prediction on the test dataset, if the
predicted probability is greater than low_threshold, the value is assumed to
be not censored because it is above the limit where left-censoring is applied.
If the probability is at or below this threshold, left-censoring is applied.

• high_threshold: Threshold to use in testing to decide if the output is right-
censored. This is a model hyper-parameter. A probit model predicts the
probability that an endogenous variable is above the right-censoring value,
specified as a high argument. During prediction on the test dataset, if the
predicted probability is greater than high_threshold, the value is assumed
to be censored because it is above the limit where right-censoring is applied.
If the probability is at or below this threshold, right-censoring is not applied.

2. The model contains three submodels: a probit model for left-censoring, a probit
model for right-censoring, and an OLS model for uncensored data.

3. Method fitProbit fits the probit model.
4. The fit method identifies the training dataset, adds a column of ones to the array

of exogenous variables if the add_constant flag was set to True, and fits the
probit model for left-censoring, probit model for right-censoring, and an OLS
model for the uncensored part of the data.

5. The predict method predicts the value of the endogenous variable. If no
exogenous variables are provided to this method, it uses the test dataset
extracted from the original dataset passed to the constructor. This method first
computes the probability that the data is left-censored using the fitted probit
model for left-censoring. This is followed by a similar calculation to predict if
it is right-censored using the right-censoring probit model. For censored data
points, it sets the predicted value at low and high levels, respectively. These
arguments were passed to the constructor. Following this, it uses the OLS model
to predict the endogenous variable in the uncensored region.
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6. To test the model, the data file containing student aptitude scores and exogenous
variables is read.

7. Column prog is categorical. It is converted to a categorical data type in the
pandas dataframe. This type is then cast to an integer that can be used for
modeling.

8. After fitting the Heckman model, the code fits an OLS model to the dataset
using training data only.

9. The models are used to predict student aptitude scores for the test dataset. For
the two models, root-mean-square errors (RMSE) against actual aptitude scores
are computed.

10. Predictions are plotted against actual scores using the seaborn plotting package.
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In this chapter, we will look at random forests – a versatile, non-linear model that can
be used for both regression and classification. Random forests have an impressive
mathematical and statistical pedigree to be labeled as advanced statistical models,
and their use of decision trees as weak learners and their reliance on bagging of
data for training an ensemble of decision trees makes them among the more widely
adopted machine learning tools.

Random forest is an ensemble learning model that is based on a collection of
decision trees. Unlike decision trees that are prone to overfitting, random forests
are robust to overfitting. They achieve this performance by growing a forest of
trees using a bag of training data selected randomly from the training dataset with
replacement and by randomly selecting a feature for splitting a tree node at each
level. The trees are grown to full depth without pruning. With these modifications,
random forests can be used for a wide variety of tasks such as classification,
regression, dimensionality reduction, outlier detection, and quantifying variable
importance. Because they are not susceptible to overfitting and do not require
extensive problem-specific hyper-parameter tuning, they have been applied to solve
varied problems with good results.

The foundational idea of random forests was proposed by [25] who investigated
the impact of randomly selecting a node-splitting feature in a decision tree. [26]
compared the performance of decision tree ensembles using bagging, boosting, and
randomization. Random forests in their present form were introduced by [27].

Decision trees have low bias but high variance because they can fit training data
well by growing in depth. However, this comes at a cost of poor generalization
because decision trees learn the noise in the training dataset. Random forests address
this problem by growing an ensemble of decision trees using a randomly drawn
subset of training dataset (with replacement). Because individual decision trees
are constructed using a differing training dataset, they have low correlation. This
process of constructing trees is called bootstrap aggregation or bagging. However, if
an input feature is important, i.e., has a strong influence in determining the output,
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it will get selected as a node-splitting feature in most decision trees and increase
the tree correlation. This will lead to poor generalization (high variance) in the test
dataset. To further reduce tree correlation, node-splitting features are selected at for
each decision tree.

8.1 Strength and Correlation of Trees

Strength and correlation are two key concepts for understanding random forests’
performance. An ideal model has low bias and low variance. Low bias ensures that
the predicted result converges to the true result with increasing batch size. Low
variance ensures that predictions are not too far from the actual but unknown result,
leading to good performance in the test dataset. For random forests, strength and
correlation of constituent decision trees determine bias and variance of the model.

Let us denote the vector of input features by X and the output of the ith decision
tree as hi(X). T denotes the number of decision trees in random forest. For a
classification problem, the true label for input vector X is Y , and there are M

different classes.
Let us define margin function m(X, Y ) as the difference between the number

of decision trees predicting the correct label Y and the number of decision trees
predicting the most frequent incorrect label normalized by the number of decision
trees, as shown in Equation 8-1. I is the indicator function that has a value of 1 if
its argument is true and 0 otherwise.

m(X, Y ) = 1

T

∑
i

[
I (hi(X) = Y ) − max

j �=Y
I (hi(X = j))

]
(8-1)

As the number of trees, T , grows to infinity, we can write the asymptotic margin
function, m̃(X, Y ), using probability over random forest parameters θ as shown in
Equation 8-2.

m̃(X, Y ) = Pθ (hi(X) = Y ) − max
j �=Y

Pθ (hi(X = j)) (8-2)

A generalization error or prediction error, PE, is defined as the probability that
an asymptotic margin is negative as shown in Equation 8-3.

PE = PX,Y (m̃(X, Y ) < 0) (8-3)

The strength, s, of a random forest is defined as the expected value of the
asymptotic margin as shown in Equation 8-4. Intuitively, the higher the margin,
the lower the error and the stronger the classifier. In the extreme case, all decision
trees of random forest predict the correct label, giving the highest margin.

s = EX,Y

[
m̃(X, Y )

]
(8-4)
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Equation 8-5 is the Chebyshev’s inequality. In the asymptotic case (as the number
of decision trees goes to infinity), X approaches the true mean μ. This gives the
expression for the generalization error of random forest as shown in Equation 8-6. s

is the asymptotic strength of random forest.

P [|Z − μ(Z)| > kσ(Z)] ≤ 1

k2
(8-5)

lim
T →∞ P (|m̃(X, Y ) − μ| > kσ) = P (0 > kσ)

= P (s < 0) setting k = s

σ

≡ PE

≤ 1
s2

σ 2

using Chebyshev’s inequality

�⇒ PE ≤ σ 2

s2

where σ 2 = var(m̃(X, Y ))

(8-6)

Next, using var(Z) = E[Z2] − (E[Z])2, we can write var(Z) ≤ E[Z2]. Using
this, the variance of margin can be expressed as a function of the correlation of
decision tree strength, ρ, as shown in Equation 8-7.

var(m̃(X, Y )) ≤ E
[
(m̃i(X, Y ))(m̃j (X, Y ))

]

= E

[(
I (hi(X) = Y ) − max

j �=Y
I (hi(X = j))

)

(
I (hl(X) = Y ) − max

j �=Y
I (hl(X = j))

)]

= ρk2

(8-7)

Combining Equations 8-6 and 8-7, one obtains Equation 8-8 relating the
generalization error of random forest to the tree correlation ρ and strength s. As
can be seen from Equation 8-8, generalization error PE increases with increasing
tree correlation ρ and decreases with increasing tree strength s.

PE ≤ ρk2

s2
(8-8)
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8.2 Building a Random Forest

Random forests can be used for classification and regression. The two problems are
related, but there are minor differences in the forest construction algorithm for the
two problems.

Let us denote the number of decision trees in random forest by T , the number of
features by M , and the number of training data samples by N . Each decision tree is
constructed as follows:

1. Sample N training data points from the dataset with replacement. This results in
around N

3 data points left out of the training set for constructing a decision tree.
This set is called the out-of-bag (OOB) training dataset. To see why sampling
with replacement leaves around N

3 data points out-of-bag, let us look at the code
in Listing 8-1. It selects N items at random from N items with replacement,
counting the number of unique elements obtained. Dividing the number of unique
elements by N gives the proportion of in-bag samples. Output of the code in
Listing 8-1 can be seen in Listing 8-2, which confirms that the number of unique
items converges to 0.64. This implies around 0.33 or one-third of items are left
out-of-bag for each decision tree.

2. Select m features at random from the set of M features. Select the feature that
gives the best node split using a criterion such as Gini impurity reduction or
entropy decrease. The Gini impurity index measures the probability of misclas-

Listing 8-1. Unique Items Drawn by Sampling with Replacement

1 import numpy as np
2

3

4 class Choice(object ) :
5 def sim( self , N):
6 arr = np.arange(N)
7 res = np.random.choice( arr , N, replace =True)
8 return np.unique( res ) .shape[0] / float (N)
9

10

11 if __name__ == "__main__":
12 np.random.seed(32)
13 ch = Choice()
14 res = [ch.sim(k) for k in range(2000, 2005)]
15 print ( res )

Listing 8-2. Number of Unique Items When Sampling with Replacement

1 [0.6305, 0.6481759120439781, 0.6363636363636364, 0.6370444333499751,
0.6372255489021956]
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sifying an element. The probability of misclassifying an element belonging to
class k is pk(1−pk) where pk is the probability of an element belonging to class
k and 1 − pk is the misclassification probability. Summing over all classes, we
get the value of the Gini index, as shown in Equation 8-9.

Gini =
∑

k

pk(1 − pk) = 1 −
∑

k

p2
k (8-9)

The Gini index ranges from 0 to 0.5. Each time a node is split, the Gini index
reduces because misclassification probability falls. Gini index reduction after a
split is shown in Equation 8-10. Gini is the Gini index at the parent node, and
Gini1 and Gini2 are the Gini indices at the two child nodes. N , N1, and N2
denote the number of data points in the parent node and the two child nodes.

�Gini = Giniparent − N

N1
Gini1 − N

N2
Gini2 (8-10)

Entropy, S, measures the information content or the degree of randomness. A
node that has all data points belonging to one class has zero entropy, while a
node with points equally distributed among the classes has maximum entropy.
The definition of entropy is shown in Equation 8-11. A node partition that reduces
entropy or randomness to a greater extent is better. Entropy reduction due to a
node split is shown in Equation 8-12.

S = −
∑

k

pk log (pk) (8-11)

�S = Sparent − N

N1
S1 − N

N2
S2 (8-12)

Increasing the number of splitting features, m, increases both the tree strength
and correlation. As observed earlier, a higher tree strength and low correlation are
needed to reduce the generalization error. Therefore, the selection of m entails a
compromise. For classification problems, m = √

M has been found to be a good
choice, while for regression, m = M

3 works better.
3. Grow each decision tree to its maximum depth without pruning.

During prediction, each decision tree predicts the class of input data, and the
class with the maximum votes is selected.

The algorithm used to build a random forest is shown in pseudo-code 15.
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Algorithm 15 Building a Random Forest for Classification
Require: Number of decision trees T , training samples N with M input features each, number of

features used for node splitting m.
1: for each decision tree t = 0, 1,2,...,T-1 do
2: Sample N samples from the training dataset with replacement. Keep track of out-of-bag

(OOB) training data samples for each tree.
3: Randomly select m distinct features from M input features.
4: Select the feature giving highest reduction of Gini impurity or entropy. Split the node on

this feature.
5: Continue growing the tree using remaining unused features, splitting on the one giving best

Gini or entropy reduction.
6: end for

A sample implementation for constructing a random forest is shown in List-
ing 8-3. In practice, a standard library implementation is used. This implementation
serves as a quick synopsis of the algorithm’s salient features.

Listing 8-3. Random Forest Implementation

1 import numpy as np
2

3

4 class Node(object):
5 def __init__(self, feature, threshold, left=None, right=None):
6 self.feature = feature
7 self.threshold = threshold
8 self.left = left
9 self.right = right

10

11

12 class RandomForest(object):
13 ''' Construct a random forest for binary classification problem '''
14

15 def __init__(self, ntrees, nsplits=None):
16 ''' Initialize.
17 :ntrees number of decision trees
18 :nsplits number of features used to split tree nodes. Tree will

have atmost nsplits height
19 '''
20 self.trees = [None] * ntrees
21 self.nSplits = nsplits
22 self.oobSamples = [None] * ntrees
23

24 def _giniNode(self, outputs):
25 pos = outputs.sum()
26 prob_pos = pos / float(outputs.shape[0])
27 prob_neg = 1 - prob_pos
28 return prob_pos * (1 - prob_pos) + prob_neg * (1 - prob_neg)
29

30 def _getGiniImpRed(self, inputfeature, outputs, threshold):
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31 ''' Gini impurity reduction by splitting on feature at threshold
'''

32 gini = self._giniNode(outputs)
33 left = (inputfeature < threshold)
34 right = (inputfeature >= threshold)
35 gini_left = self._giniNode(outputs[left])
36 gini_right = self._giniNode(outputs[right])
37 nobs = outputs.shape[0]
38 return gini - left.sum() / float(nobs) * gini_left - right.sum() /

float(nobs) * gini_right
39

40 def _constructTree(self, inputs, outputs, features, splits):
41 ''' Construct a decision tree
42 :inputs 2 dimensional numpy ndarray of shape (num observations, num

features)
43 :outputs 1 dimensional ndarray with output. Shape (num_observations

)
44 :features list of features to split the node
45 :splits threshold on number of splits
46 '''
47 if splits <= 0:
48 return
49

50 sel_feat = None
51 reduction = None
52 sel_threshold = None
53 for feat in features:
54 threshold = np.random.choice(inputs[:, feat], size=1)
55 gini_red = self._getGiniImpRed(inputs[:, feat], outputs,

threshold)
56 if (reduction is None) or (reduction < gini_red):
57 reduction = gini_red
58 sel_feat = feat
59 sel_threshold = threshold
60

61 node = Node(sel_feat, sel_threshold)
62 left_data = (inputs[:, sel_feat] <= sel_threshold)
63 features_rem = [f for f in features if f != sel_feat]
64 node.left = self._constructTree(inputs[left_data, :], outputs[

left_data], features_rem, splits - 1)
65 right_data = np.logical_not(left_data)
66 node.right = self._constructTree(inputs[right_data, :], outputs[

right_data], features_rem, splits - 1)
67 return node
68

69 def construct(self, inputs: np.ndarray, outputs: np.ndarray) -> None:
70 ''' Construct a random forest for binary classification problem
71 :param inputs: 2 dimensional numpy ndarray of shape (num

observations, num features)
72 :param outputs: 1 dimensional ndarray of shape (num_observations).
73 Contains booleans: True or False
74 '''
75
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76 nfeat = inputs.shape[0]
77 if self.nSplits is None:
78 self.nSplits = int(np.sqrt(nfeat))
79 y_labels = sorted(list(set(outputs)))
80 assert len(y_labels) == 2
81 y_out = np.where(outputs == y_labels[0], True, False)
82 features = np.arange(inputs.shape[1])
83 for i in range(len(self.trees)):
84 sample_inputs = np.random.choice(inputs.shape[0], inputs.shape

[0], replace=True)
85 self.trees[i] = self._constructTree(inputs[sample_inputs, :],

y_out[sample_inputs], features)
86 self.oobSamples[i] = sample_inputs

For regression, random forests take an average of individual decision tree
predictions instead of a majority vote. The impurity reduction criterion used for
splitting a node is the mean square deviation between a known output and the mean
of outputs of data points falling in a node. This is shown in Equation 8-13. N denotes
the number of data points in a node, and yi is the data point output.

�Impurityregression = MSEparent − N1

N
MSEchild1 − N2

N
MSEchild2

MSEnode =
∑N

i=1 (yi − ȳ)2

N

ȳ =
∑N

i=1

y

(8-13)

8.3 PerformanceMetrics and Error Estimates

Random forests do not need a separate cross-validation dataset to produce perfor-
mance metrics. They use out-of-bag (OOB) training data for this purpose. Each
decision tree has about one-third data points as out-of-bag data and is used to predict
an outcome for OOB data. For classification, a majority vote from decision trees
becomes the predicted outcome. There would be about one-third trees predicting
an outcome for each data. For classification, a loss function such as cross-entropy
loss shown in Equation 8-14 can be used to define an OOB error estimate. This
estimate serves as an unbiased error estimate of the random forest. N is the number
of data points, K is the number of classes, pik is the actual probability of data point
i belonging to class k, and p̂ik is the corresponding predicted probability.

OOB Error = −
N∑

i=1

K∑
k=1

pik log(p̂ik) (8-14)
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For regression, the mean square loss can be used to get an unbiased error
estimate, as shown in Equation 8-15.

OOB Errorregression =
∑N

i=1(yi − ŷi )
2

N
(8-15)

Random forests can also be used to give an estimate of input feature importance.
The following metrics can be used for the purpose:

1. Permutation variable importance: For each OOB data point, count the number
of correct predictions by decision trees. Let us say this value is C1. Now, get
the range of values taken by a feature and randomly permute its value. Get the
new predictions for this modified data point with one feature value randomly
permuted and find the number of correct predictions C2. Permutation variable
importance can then be calculated using Equation 8-16, where T is the number
of decision trees. Intuitively, if a variable is important in predicting the outcome,
permuting the value of the feature will change the predicted class and give a
low value of C2. This will give a high value of permutation variable importance.
Conversely, a variable that does not determine the classification of a data point
will produce C2 equal to C1, giving 0 permutation variable importance.

Permutation Var. Imp. = |C1 − C2|
T

(8-16)

2. Gini importance: Adding up Gini impurity reduction each time a variable
(feature) is used for splitting a node and normalizing the sum by the number
of trees T gives Gini importance score for the variable. An important variable
will have higher Gini impurity reduction on average and will get higher Gini
importance.

3. Dimensionality reduction using proximity: Proximity measures the similarity
between two data points and can be used for dimensionality reduction. To
calculate this, the following steps are performed:

• Initialize a square unit diagonal matrix A of size (N,N) where N is the
number of training data points. The matrix has ones on the diagonal.

• Get all decision trees in the forest to predict outcome for all N data points
(OOB and in-the-bag training samples). Each time two data points m and n

end up in the same node of a decision tree, increment A[m, n] and A[n,m] by
one.

• Let R[i] and C[j ] denote the row and column averages of A matrix. μ denotes
the overall average of quantities in matrix A. These can be calculated using
Equation 8-17.
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R[i] =
∑N

k=1 A[i, k]
N

C[j ] =
∑N

k=1 A[k, j ]
N

μ =
∑N

k=1
∑N

l=1 A[k, l]
N2

(8-17)

• Calculate a rescaled matrix C using row averages R, column averages C, and
overall average μ using Equation 8-18.

C[i, j ] = A[i, j ] − R[i] − C[j ] + μ (8-18)

• Perform an eigenvalue decomposition of matrix C using SVD. Retain p

most significant eigenvectors. Corresponding p eigenvectors define the new
features of the reduced dimension space.

8.4 Other Applications of Random Forests

Random forests have been used in many applications besides classification and
regression. Some of them are discussed below:

1. Filling missing data in the training dataset: In several machine learning
applications, data is often unavailable. For example, in a survey, certain features
like income may be missing. To fill missing values of non-categorical features,
one calculates the median value of this feature for all data points belonging to a
particular class. Missing feature is then filled with this median value for all data
points belonging to that class. For categorical variables, the most frequent feature
value is used in place of median.

2. Filling missing data in the test dataset: A testing data point with missing
feature values cannot be supplied as an input to random forest. To overcome this
problem, the testing data point is assumed to belong to class i. Using training
dataset values of this feature for class i, the missing value is filled (using median
for non-categorical features and most frequent value for categorical features).
The testing data point with values for all features is then run as an input to
the random forest and the number of votes for class i counted. This process
is repeated for all classes. The class with maximum votes is selected, and the
missing feature value used with that class is accepted.

3. Clustering: In clustering, we are interested in grouping points into clusters.
Points within one cluster are closer to each other than to points from another
cluster. Clustering is an example of unsupervised learning where data comes as a
collection of features with no output value. Random forests tackle this problem
by assigning all data points in input to class 0. New data is now generated by
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randomly permuting each feature value from the set for N observed values of
this feature. If the original dataset had N points, N new points are generated by
this process. The new points are assigned to class 1. Random forest is trained
using this two class data. If out-of-bag error estimate is less than a threshold
(say 20%), it means that input features have relationships that can be used for
clustering. On the other hand, if OOB error estimate is greater than threshold, it
indicates that input features do not have pronounced interrelationships and data
cannot be clustered. If OOB error estimate is less than a threshold, proximity is
computed for original data points, i.e., those of class 0. Dimensionality reduction
is performed using the method described earlier. After projecting the points
to a lower dimensional feature space, the K-means algorithm can be used for
clustering the data.

4. Outlier detection: Outliers are data points with feature values that are incon-
sistent with distribution observed in remaining data. To detect outliers, the
proximity matrix is calculated as described earlier. Points with low average
proximity to other data points can be regarded as outliers.

5. Fixing incorrect labels: Datasets often come with incorrect class labels. For
example, a banking call center operator may have made a mistake in reporting
a value. Random forests can be used to detect these data points as outliers. A
new dataset is created with an output class as a new feature and outlier detection
algorithm outlined earlier is applied. This will identify outliers. Outliers are then
removed, and a random forest is trained on the clean dataset. Correct class labels
for outliers are predicted using the trained random forest.

8.5 Financial Applications

In this section, let us look at a few practical examples to illustrate the random forest
concepts learned so far.

8.5.1 Marketing a Banking Product

Banks often call potential customers to market new products such as credit cards,
checking accounts, or investment products. This example is based on “Bank
Marketing Data Set” which is available from the University of California, Irvine
[28], and is based on research work by [29]. The dataset contains details of a
Portuguese bank’s term deposit marketing campaign. Term deposits are similar to
certificate of deposits or CDs. The dataset contains 41,118 rows. Each row has 20
features such as client age, client job, 3-month EURIBOR, etc., and a binary output
variable indicating if the client subscribed to the term deposit or not.

Steps for building a random forest prediction model are discussed below.
The code uses random forest implementation from the sklearn library. This is a
classification task, so the sklearn.ensemble.RandomForestClassifier class is used.
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1. Identify input features that need to be excluded to prevent information leakage.
Duration is an input feature of the data. However, duration is not known until
the end of the call, at which point the outcome of the call is generally known,
i.e., one knows whether a client will subscribe to the product or not. Ideally,
this model will be used to screen potential customers for marketing campaign,
with those that are likely to subscribe being contacted. Since duration of the
call will not be known for the testing data, this feature is excluded. This leaves
us with 19 features.

2. From the data, it can be observed that this is an imbalanced class problem - the
number of respondents who do not subscribe outnumbers those who do by a
ratio of 12.5 : 1.

3. Identify the testing and training datasets. In this example, let us use 90% of the
data as training data and the remaining 10% as testing data.

4. Either remove data with missing feature values or assign the missing values with
a special placeholder value. In this example, feature job has a value unknown
for some rows. Let us retain the rows and assign it as a special value unknown.
This is a categorical column.

5. Convert categorical columns to integers. Integers require less memory than
strings in general, and most artificial intelligence models require numeric
inputs.

6. Normalize the numeric columns. For a standard Gaussian distribution, 95%
of probability density lies between [−1.95, 1.95]. Normalizing input features
using x−μ

2σ
where x is the feature value and (μ, σ ) are the mean and standard

deviation of the feature value over the training dataset gives a simple method of
normalizing inputs.

7. For reproducibility of results, specify the random_state argument to the
RandomForestClassifier constructor. This argument is used as a seed for
random number generator.

8. Figure 8-1 shows Gini importance values for the features in the training dataset.
Age is the most important predictor, followed by euribor3m, campaign,
education, and job. This is confirmed by a histogram of outcome (“yes” or
“no”) against age and euribor3m. Certain age groups like 30–35 are more
inclined to refuse, apparently due to a lack of interest in savings, as seen in
Figure 8-2. When rates are high (> 5%), there is less interest in saving products
because of availability of other higher yielding investments (Figure 8-3).

9. Numerical features in testing data should be normalized using the same
parameters applied to testing data. Categorical features in testing data need to
be handled more carefully. If a category within a categorical feature has not
been seen in training data, the feature value is essentially unknown because the
model has not been trained on data with that categorical value of the feature. If
the feature is important, the model is likely to make an incorrect prediction. All
such cases should be recorded and the model retrained using new training data
with those categorical feature values present. If the feature is not important in
predicting the outcome, its value can be set to a default value.
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Figure 8-1. Gini Importance of Input Features

Figure 8-2. Histogram of Outcome on Age for Training Data

10. Check if the OOB score has converged to a stable value to determine the number
of decision trees in the random forest. Some problems with large data variance
may need larger number of trees. In this example, the plot of OOB score in
Figure 8-4 against a number of trees shows that the error is stable at around 110
trees.
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Figure 8-3. Histogram of Outcome on EURIBOR 3-Month Rate for Training Data

Figure 8-4. Convergence of Out-of-Bag Score with Increasing Number of Trees
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Figure 8-5. Confusion Matrix for Training Data

11. Plot the confusion matrix for both training (Figure 8-5) and testing (Fig-
ure 8-6) datasets. From the training data confusion matrix, we can see that
the precision is 2571

2571+44 ≈ 98.3%, recall is 2571
2571+177 ≈ 93.6%, and accuracy

is 2571+34278
2571+34278+44+177 ≈ 99.4%. From the testing data confusion matrix in

Figure 8-6, the precision is 61.2%, recall is 16.4%, and accuracy is 56.8%.
Performance metrics differ widely between training and test datasets. To
understand why, let us look at the distribution of the outcome (result) across two
features that have high Gini importance: age and euribor3m. From Figure 8-7,
we can see that client response has changed markedly based on age between
training and testing data. While in training data, respondents in age groups
30–35 were predominantly not interested in term deposits, in testing data,
similar age respondents were interested in the product. Similarly, comparing
the distribution of rates (euribor3m) and response in testing data, one can
observe that rates were significantly lower in testing data, and there is a greater
overall interest as seen in Figure 8-8. Perhaps the low interest rate environment
observed in testing data changed preferences toward term deposit products. This
illustrates the pitfall of assuming training and testing data is from the same
underlying distribution, most likely, underlying distributions have changed.
To mitigate this problem, additional features that capture changing customer
preferences need to be included (such as growth of savings, investments, and
wages). Additional training data may also be required.
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Figure 8-6. Confusion Matrix for Testing Data

Figure 8-7. Histogram of Outcome on Age for Testing Data
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Figure 8-8. Histogram of Outcome on EURIBOR 3-Month Rate for Testing Data

The code for this example is shown in Listing 8-4.

Listing 8-4. Random Forest Classification for Banking Product

1 import numpy as np
2 import pandas as pd
3 import os
4 from sklearn .ensemble import RandomForestClassifier
5 import matplotlib . pyplot as plt
6 import seaborn as sns
7 from sklearn . metrics import confusion_matrix
8 import logging
9

10 logging . basicConfig ( level =logging.DEBUG)
11

12

13 class BankingRF(object):
14 """ Predict if clients subscribes to a banking product (term deposit ) using random

forest """
15 LOGGER = logging.getLogger("BankingRF")
16

17 def __init__ ( self , datadir : str , filename : str = "bank−additional−full . csv" ,
testing : float = 0.1,

18 ntree : int = 100, fill_na_features =True, oob_score_convergence=False)
−> None:
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19 """
20 :param datadir : Data directory containing input file
21 :param filename : File name containing the data
22 :oaram testing : percentage of data to set aside as testing data
23 :param ntree : Number of decision trees in random forest
24 :param fill_na_features : Fill NA categorical features with default value
25 :param oob_score_convergence: Plot OOB score convergence
26 : rtype : None
27 """
28 df = pd.read_csv(os . path . join ( datadir , filename ) , sep=";")
29 excludeCols = [" duration "]
30 df .drop(columns=excludeCols, inplace =True)
31 self . resultCol = "y"
32 df . loc [:, self . resultCol ] = df . loc [:, self . resultCol ]. map({'yes ' : True, ' no' :

False})
33 self . df = df
34

35 nrows = self . df .shape[0]
36 training = 1.0 − testing
37 self . trainDf = self . df . loc [0: int ( training ∗ nrows), :]. reset_index (drop=True)
38 self . testDf = self . df . loc [ int ( training ∗ nrows) :, :]. reset_index (drop=True)
39 features = list ( self . trainDf .columns)
40 features . remove(self . resultCol )
41 self . featureNames = features
42 self .numericCols = []
43 self .normalizeCols = {}
44 self . categoricalCols = []
45 self . categoricalMap = {}
46 self ._processColumns()
47 self . fillNa = fill_na_features
48 self .oobScore = oob_score_convergence
49 self .model = RandomForestClassifier ( n_estimators =ntree , random_state=0)
50 self . trainModel ()
51

52 def _processCategoricalCols ( self , df : pd.DataFrame) −> None:
53 """
54 Process categorical columns by creating a mapping
55 :param df: training dataframe
56 : rtype : None
57 """
58 for col in self . categoricalCols :
59 unique = np. sort (df . loc [:, col ]. unique() )
60 self . categoricalMap[col ] = {u: i for i , u in enumerate(unique)}
61

62 def _applyCategoricalMapping( self , df : pd.DataFrame) −> pd.DataFrame:
63 """
64 Apply mappping to convert categorical columns to integers
65 : rtype : pd.DataFrame with mapped categorical columns
66 """
67 for col in self . categoricalCols :
68 df . loc [:, col ] = df . loc [:, col ]. map(self . categoricalMap[col ])
69 return df
70
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71 def _normalizeNumericCols(self , trainingDf : pd.DataFrame) −> None:
72 """
73 Calclate normalizing params for numeric columns
74 :param trainingDf :
75 : return : None
76 """
77 for col in self .numericCols:
78 mean = trainingDf . loc [:, col ]. mean()
79 sd = trainingDf . loc [:, col ]. std ()
80 self .normalizeCols[ col ] = (mean, 2 ∗ sd)
81

82 def _applyNormalization( self , df : pd.DataFrame) −> pd.DataFrame:
83 """
84 Apply normalization as col = (x−mean)/(2∗sd)
85 :param df:
86 : return : df
87 """
88 for col in self .numericCols:
89 mean, sd2 = self .normalizeCols[ col ]
90 df . loc [:, col ] = (df . loc [:, col ]. values − mean) / sd2
91 return df
92

93 def _processColumns(self ) −> None:
94 """
95 Process input columns from dataframe . Dataframe is in self . df
96 : return : None
97 """
98 df = self . trainDf
99

100 # identify categorical columns
101 cols = list (df .columns)
102 cols . remove(self . resultCol )
103 for col in cols :
104 if df . dtypes[col ]. name == "object" :
105 self . categoricalCols .append(col)
106 else :
107 self .numericCols.append(col)
108

109 self . _processCategoricalCols (df)
110 self . trainDf = self ._applyCategoricalMapping( self . trainDf )
111 self . testDf = self ._applyCategoricalMapping( self . testDf )
112

113 self ._normalizeNumericCols(df)
114 self . trainDf = self . _applyNormalization( self . trainDf )
115 self . testDf = self . _applyNormalization( self . testDf )
116

117 def _plotOOBError(self) :
118 estimators = range (15, 150)
119 X = self . trainDf . loc [:, self . featureNames]. values
120 y = self . trainDf . loc [:, self . resultCol ]. values
121 err = []
122 for nest in estimators :
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123 rf = RandomForestClassifier ( n_estimators =nest , oob_score=True, random_state
=0)

124 rf . fit (X, y)
125 err .append(1 − rf .oob_score_)
126 errdf = pd.DataFrame({"Number of Trees": list ( estimators ) , "OOB Error Rate

": err })
127 sns . lineplot ( data=errdf , x="Number of Trees", y="OOB Error Rate")
128 plt .show()
129

130 def _plotConfusionMatrix( self , labels : np.ndarray , predictions : np.ndarray) −>
None:

131 cm = confusion_matrix ( labels , predictions )
132 fig , ax = plt . subplots ( figsize =(10, 10))
133 sns .heatmap(cm, annot=True, fmt="d", linewidths =0.25, ax=ax)
134 plt . xticks ([0, 1, 2])
135 plt . yticks ([0, 1, 2])
136 plt . ylabel ( ' Actual ' )
137 plt . xlabel ( ' Predicted ' )
138 plt .show()
139

140 def _calcMeasures( self ) −> None:
141 """ Calculate and plot measures after fitting random forest """
142 importances = self .model. feature_importances_
143 std = np. std ([ tree . feature_importances_ for tree in self .model. estimators_ ],

axis=0)
144 shortFeatName = []
145 for feature in self . featureNames:
146 if len ( feature ) > 8:
147 feature = feature [0:2] + " .. " + feature [−3:]
148 shortFeatName.append( feature )
149 impdf = pd.DataFrame({"Feature": shortFeatName,
150 "Gini Importance": importances ,
151 "sd" : std })
152

153 ax = sns . barplot ( data=impdf, x="Feature" , y="Gini Importance")
154 ax. errorbar ( data=impdf, x="Feature" , y="Gini Importance", ls=' ' , lw='3 ' , color

="black")
155 plt .show()
156

157 self ._plotOOBError()
158

159 def trainModel( self ) −> None:
160 """
161 Train the random forest classifier on training dataset
162 : return :
163 """
164 X = self . trainDf . loc [:, self . featureNames]. values
165 y = self . trainDf . loc [:, self . resultCol ]. values
166 self .model. fit (X, y)
167 if self .oobScore:
168 self ._calcMeasures()
169

170 ypred = self .model. predict (X)
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171 self . _plotConfusionMatrix(y, ypred)
172

173 Xtest = self . testDf . loc [:, self . featureNames]. values
174 ytest = self . testDf . loc [:, self . resultCol ]. values
175

176 rowsWithNan = np.where(np.isnan(Xtest ) .sum(axis=1)) [0]
177 if rowsWithNan.shape[0]:
178 self .LOGGER.info("Some categorical variables in test data were not present

in training !")
179 if self . fillNa :
180 Xtest = np.nan_to_num(Xtest) # fill missing categorical variables with

0
181 else :
182 rowsWithoutNan = np.array ([ i for i in range( Xtest .shape [0]) if i not in

set (rowsWithNan)])
183 Xtest = Xtest [rowsWithoutNan, :]
184 ytest = ytest [rowsWithoutNan]
185

186 testPred = self .model. predict ( Xtest )
187

188 self . _plotConfusionMatrix( ytest , testPred )
189

190 def testModel( self , testDf : pd.DataFrame) −> None:
191 """
192 Test the model using provided testing data
193 :param testDf :
194 : return : None
195 """
196 if testDf is None:
197 testDf = self . testDf
198

199 X = testDf . loc [:, self . featureNames]. values
200 pred = self .model. predict (X)
201 y = testDf . loc [:, self . resultCol ]. values
202 self . _plotConfusionMatrix(y, pred)
203

204

205 if __name__ == "__main__":
206 rf = BankingRF(r"C:\prog\cygwin\home\samit_000\RLPy\data\book\bank−additional",

ntree =110)
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The generalized method of moments, often abbreviated as GMM, is a method of
solving a system of equations where exogenous variables are correlated with error
terms and the probability distribution of data conditional on model parameters is
intractable to compute. The method can be used for linear or non-linear system
of equations. In the context of linear equations, we observed in an earlier chapter
that the existence of correlation between exogenous variables and error term causes
parameter estimates from OLS to be biased and inconsistent. This necessitated the
use of instrumental variables. These variables are dependent on exogenous variables
and uncorrelated with error terms. In the context of linear system of equations,
GMM can be viewed as a generalization of the method of instrumental variables
for estimating model parameters.

GMM was proposed by [30] in a paper titled “Large Sample Properties of
Generalized Method of Moments Estimators.” GMM has been widely adopted by
economists and finance practitioners, as witnessed by the long list of research papers
leveraging the method, for example, [31–33], and [34].

9.1 GMM for Linear Equations

Let us formulate the generalized method of moments (GMM) for a linear equation.
Let us assume we have the governing equation as shown in Equation 9-1. Here, y(t)

is a vector of size N , X is a two-dimensional array of shape N × M , and β is a
one-dimensional vector of size M . We have some column vectors in the matrix of
exogenous variables with non-zero correlation with the error term, ε(t). We know
that estimates of β obtained using OLS are biased and inconsistent, and we must
resort to using instrumental variables.

y(t) = X(t)β + ε(t) where X(t) = [X1(t),X2(t), · · · ,XM(t)]
E [Xm(t)ε(t)] �= 0 for some m ∈ [1, 2, · · · ,M] (9-1)
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Let us assume we have a set of K instrumental variables, Z(t), that are dependent
on exogenous variables X(t) but independent of the error term ε(t), as shown in
Equation 9-2. Z(t) is an N × K matrix with K columns or instrumental variables.
N represents the number of observations. Let us also assume that Z(t) is an ergodic
process. This means that the mean of Z(t) is a constant; all its auto-covariances
are constant as is their sum in the limit when t → ∞. This condition is shown in
Equation 9-3.

E [Z(t)ε(t)] = 0 for all K instrumental variables

E [Z(t) (y(t) − X(t)β)] = 0
(9-2)

E [Z(t)] = lim
t→∞

1

T

T∑
t=1

Z(t) = μ

E [Z(t)Z(t − c)] = lim
t→∞

1

T

T∑
t=1

(Z(t) − μ)T (Z(t − c) − μ) = �(c)

∞∑
q=1

�(q) = � a finite value

(9-3)

Expanding Equation 9-2, we can write Equation 9-4, where E[Z(t)y(t)] ≡ �z,y
and E[Z(t)X(t)] ≡ �z,x. Equation 9-2 comprises a set of K equations in M

unknowns, namely, the elements of parameter vector β. We have N equations
for each set, corresponding to the number of observations. Because we have K

independent instrumental variables Z, the rank of �z,x is K.

E[Zi(t)y(t)] = E[Zi(t)X(t)]β for i ∈ (1, 2, · · · ,K)

�zi , y = �zi , xβ

�z, y = �z, xβ putting all equations for i as rows

�z, y = (K × 1) vector

�z, x = (K × M) matrix

β = (M × 1) vector

rank (�z, x) = K

GMM handles K > M

Use K OLS solvers for K = M

No solution for K < M , we need more instrumental variables

(9-4)
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If K = M , we can solve for all M parameters in β by applying OLS to each of
K equations. If K < M , we cannot determine all parameters. If K > M , we cannot
determine all parameters uniquely. This is the case handled by GMM. Moreover,
when K = M , the OLS solution reduces to GMM estimate, and the two methods
produce identical results. Therefore, we will consider the general case of K ≥ M

for the GMM solution.
For the case where K ≥ M , GMM minimizes the Mahalanobis distance(

�zi,y − �zi,xβ
)T W

(
�zi,y − �zi,x]β

)
for each i. In order to calculate the Maha-

lanobis distance, we need a symmetric, positive-definite matrix W with dimensions
(K,K). This is shown in Equation 9-5.

min
β

(
�zi,y − �zi,xβ

)T W
(
�zi,y − �zi,xβ

)

For each i ∈ (1, 2, · · · ,K)

∴ min
β

(
�z,y − �z,xβ

)T W
(
�z,y − �z,xβ

)
(9-5)

Differentiating Equation 9-5 with respect to β and setting to 0 yields the value of
parameters β, as shown in Equation 9-6.

β =
(
�T

z,xW�z,x

)−1
�T

z,xW�z,y (9-6)

Equation 9-6 has matrix W which we have not specified so far. GMM selects
W in order to minimize the variance of β. The variance of β can be calculated as
shown in Equation 9-7.

Variance(β) =
(
�T

z,xW�z,x

)−1
�T

z,xWZεZεT W
(
�T

z,xW�z,x

)−1

min
W

Variance(β)

�⇒ W =
(
ZεεT ZT

)−1

Denote
(
ZεεT ZT

)
≡ S

min variance(β) =
(
�T

z,xS
−1�z,x

)−1

where ε = y − Xβ

(9-7)
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Equations 9-6 and 9-7 describe the GMM solution for a linear system. In order to
estimate the parameters, β, one requires an estimate of W according to Equation 9-6.
However, the estimation of W requires the calculation of residuals, ε = y − Xβ,
which requires an estimate of parameters β that depends on W.

This necessitates an iterative procedure where one assumes an initial value of W,
computes β, and updates the value of W. This iterative procedure describes GMM,
as shown in pseudo-code 16.

Algorithm 16 GMM Iterative Estimation for Linear System
Require: Data y, X, instrument variables Z, threshold t for deciding when to terminate iterations.
1: Assume W = I or �−1

x,x.
2: Set δ = 1.
3: for iter = 1,2,..., while δ > t do
4: Calculate the parameter estimate, β, using Equation 9-6.
5: Calculate residuals, ε = y − Xβ.
6: Calculate the optimum value of weighing matrix W that gives minimum variance for

parameter estimate. Use Equation 9-7.

W =
(
ZεεT ZT

)−1
(9-8)

7: Calculate the change δ = ‖W(iter) − W(iter − 1)‖2. Terminate iterations when δ falls
below threshold t .

8: end for

A key step in pseudo-code 16 is to compute the optimum value of weighing
matrix W. This requires the calculation of S = (

ZεεT ZT
)
. If the errors, ε, are

homoskedastic, i.e., have constant variance, a consistent estimator of S is shown in
Equation 9-9.

S = σ 2E
[
ZT Z

]

where E
[
εT ε

]
= σ 2I

if ε(t) has constant variance

(9-9)

However, if ε(t) is heteroskedastic, we need to use White’s heteroskedasticity
consistent estimator as described by White [1]. The estimator is shown in Equa-
tion 9-10.
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If ε is heteroskedastic with time-varying variance but zero autocorrelation

S = 1

N

(
1

N

N∑
t=1

Z(t)Z(t)T
)−1 (

1

N

N∑
t=1

Z(t)Z(t)T ε(t)2

)

× 1

N

(
1

N

N∑
t=1

Z(t)Z(t)T
)−1

(9-10)

If the error terms, ε, have heteroskedasticity and autocorrelation, we must use
the Newey-West heteroskedasticity and autocorrelation (HAC) consistent estimates,
shown in Equation 9-11.

SHAC = 1

N

N∑
t=1

wt,n

(
�(t) + �(t)T

)

�(t) = Lag t autocorrelation estimated using

heteroskedasticity consistent estimator

(9-11)

9.2 GMM for Non-linear Equations

If the underlying equations describing the system are non-linear in the relationship
between endogenous and exogenous variables, we must use GMM for non-linear
equations. The expressions are analogous to those obtained for linear equations once
we linearize the non-linear moment conditions.

Let us suppose we have a non-linear relation between exogenous and endogenous
variables, as shown in Equation 9-12.

g (y(t),X(t),β) = ε(t) (9-12)

Proceeding like we did for the case of linear equations, moment conditions can
be written as shown in Equation 9-13 using a set of instrumental variables, Z(t).

E [Z(t)ε(t)] = 0

E [Z(t)g (y(t),X(t),β)] = 0
(9-13)
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Linearizing Equation 9-13 in the neighborhood of a solution to the non-linear
Equation 9-12, we obtain Equation 9-14. In Equation 9-14, β0 is assumed to be a
solution to Equation 9-13.

E

[
Z(t)

(
g (y(t),X(t),β0) + ∂g (y(t),X(t),β)

∂β
|β=β0δβ

)]
= 0

�⇒ E [Z(t) (g (y(t),X(t),β0) +
∂g (y(t),X(t),β)

∂β
|β=β0 (β − β0)

)]
= 0

E

[
Z(t)

(
g (y(t),X(t),β0) − ∂g (y(t),X(t),β)

∂β
|β=β0β0+

∂g (y(t),X(t),β)

∂β
|β=β0β

)]
= 0

β0 being a solution to non-linear system

(9-14)

Comparing Equation 9-14 to its linear cousin, Equation 9-4, E[Zi(t) (y(t) − X(t)
β)] = 0, we notice that setting y and X as shown in Equation 9-15, we can transform
the non-linear moment equations to linear moment equations. From this point on,
we can use the corresponding expressions from the last section for the GMM
estimator after making the substitutions shown in Equation 9-15.

Replace y(t) from the linear case with

g (y(t),X(t),β0) − ∂g (y(t),X(t),β)

∂β
|β=β0β0

Replace X(t) from the linear case with

− ∂g (y(t),X(t),β)

∂β
|β=β0

(9-15)

In the above equations, we need to know β0 a priori. We incorporate it in the
iterative procedure shown in pseudo-code 17.

9.3 Hansen J Test

The Hansen J test—also known as the Sargan-Hansen J test after [39] who initially
proposed it and [30] who adapted it to GMM—is a test to establish the validity of
moment conditions used in an overdetermined GMM system of equations. This test
is only valid when K , or the number of moment conditions, is strictly greater than
the number of free parameters, M .
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Algorithm 17 GMM Iterative Estimation for Non-linear System
Require: Data y, X, instrument variables Z, threshold t for deciding when to terminate iterations.
1: Assume W = I or �−1

x,x.
2: Assume a value of β0.
3: Set δ = 1.
4: for iter = 1,2,..., while δ > t do
5: Compute the parameters shown in Equation 9-15 to complete the correspondence between

linear and non-linear GMM equations.
6: Calculate the parameter estimate, β, using Equation 9-6.
7: Calculate residuals, ε = y − Xβ, i.e., the linearized form of non-linear equations.
8: Calculate the optimum value of weighing matrix W that gives minimum variance for the

parameter estimate. Use Equation 9-7.

W =
(
ZεεT ZT

)−1
(9-16)

9: Calculate the change δ = ‖W(iter) − W(iter − 1)‖2. Terminate iterations when δ falls
below threshold t .

10: end for

GMM attempts to minimize the Mahalanobis norm of moment expression.
Norms being non-negative, the minimum value they can take is zero. This provides
the basis for the test. The test statistic is shown in Equation 9-17 and is a consistent
expression for evaluating Equation 9-5.

J statistic ≡ 1

N

N∑
i=1

g (yi,Xi,β)T Ŵ ≡ 1

N

N∑
i=1

g (yi,Xi,β) (9-17)

Under certain regularity conditions and as N → ∞, J statistic converges to a χ2

distribution with K − M degrees of freedom, as shown in Equation 9-18.

J statistic ∼ χ2 (K − M) (9-18)

If values are within the range of a χ2 (K − M) distribution using a prespecified
confidence interval, the null hypothesis that moment conditions are zero cannot
be rejected. This is considered an evidence supporting the plausibility of moment
conditions and, consequently, of the validity of parameter estimates. On the other
hand, if the converse is true, the null hypothesis is rejected, and some moment
conditions may not be true according to the data.

9.4 Application

In this section, let us apply GMM to estimate the parameters of the CEV model—
an acronym for constant elasticity of variance. The model is frequently used in
commodity markets. It posits a relationship between the evolution of an asset price
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as a function of drift and random fluctuations. The model is shown in Equation 9-19.

dSt = μStdt + σS
γ
t dWt

Wt = N(0, 1) standard normal distribution
(9-19)

In Equation 9-19, St denotes the asset price at time t , μ denotes the drift or
diffusion coefficient, and σ is a constant that contributes to volatility. γ is another
constant that contributes to volatility. The CEV model assumes that volatility is
influenced by the level of asset price. For values of γ > 1, higher volatility is
observed when asset price is high. Conversely, volatility declines when asset price
falls. On the other hand, if γ < 1, volatility rises as prices fall. This can be seen
by writing an expression for volatility, as shown in Equation 9-20, assuming the
CEV model governs asset price evolution. Due to this behavior, the CEV model is
sometimes referred to as the local-volatility model.

d log St = 1

St

dSt − 1

2S2
t

(dSt )
2 + · · ·

=
(
μ − σ 2S

2(γ−1)
t

)
dt + σS

γ−1
t dWt

�⇒ mean (d log St ) = E
[
d log St

] =
(
μ − σ 2S

2(γ−1)
t

)
dt

E
[
(d log St − mean (d log St ))

2
]

= σ 2S
2(γ−1)
t dt

variance = σ 2S
2(γ−1)
t dt

(9-20)

Let us estimate the values of the CEV model’s parameters while fitting it to S&P
500 prices. There are three model parameters: μ, σ , and γ . Let us first derive the
moment equations, g(θ,X). Rewriting the CEV model in discrete form, we get the
first two equations using instrument variables 1 and St as shown in Equations 9-21
and 9-22.

St+
t − St = μSt
t + σS
γ
t 
Wt

St+
t − St − μSt
t = σS
γ
t 
Wt

Et [St+
t − St − μSt
t] = 0

Using 1 as instrument variable

(9-21)

Et [St (St+
t − St − μSt
t)] = Et

[
σS

γ+1
t 
Wt

]

= σS
γ+1
t Et [
Wt ] = 0

Using St as instrument variable

(9-22)
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To derive a third moment condition, we can use the asset price at time t − 1 as an
instrument variable. The moment condition is shown in Equation 9-23.

Et [St−1 (St+
t − St − μSt
t)] = Et

[
σSt−1S

γ
t 
Wt

]

= σSt−1S
γ+1
t Et [
Wt ] = 0

Using St−1 as instrument variable

(9-23)

It should be noted that the expectation of moment conditions 9-21, 9-22, and 9-23
is taken at time t . There, we know all the variables at time t and prior to t . Also, let
μ denote the drift in price annually. Therefore, 
t = 1

251 because a year has roughly
251 trading days. 
t represents one day because we have end-of-day prices.

We have three moment conditions, but it is still not sufficient for GMM because
none of the three conditions include σ or γ . Let us derive a fourth moment condition
using the expression for volatility in Equation 9-20. The derivation of the fourth
moment condition is shown in Equation 9-24.

E
[
(d log St − mean (d log St ))

2
]

= σ 2S
2(γ−1)
t dt

E
[
(d log St − mean (d log St ))

2 − σ 2S
2(γ−1)
t dt

]
= 0

E
[
(log St+
t − log St − mean (d log St ))

2 − σ 2S
2(γ−1)
t 
t

]
= 0

E

[(
log

St+
t

St

− mean

(
log

St+
t

St

))2

− σ 2S
2(γ−1)
t 
t

]
= 0

Using 1 as instrument variable

(9-24)

Using the abovementioned four moment conditions that include the three param-
eters, we are in a position to use GMM to determine the parameters. The output
from the model along with estimated parameter values is shown in Listing 9-1. As
seen from the output, the value of γ is 0.6821. Being less than 1, it comports with
the observation that market volatility increases when prices fall. Certain confidence
intervals and standard errors are reported as not a number (nan) because standard
errors are too small. The p-value of the Hansen J test is 0.0523. Consequently, we
cannot reject the null hypothesis at 95% confidence level that moment conditions
are valid and are satisfied by the data.

Listing 9-1. GMM Results for Fitting S&P 500 Returns to CEV Model

1 Optimization terminated successfully.
2 Current function value: 0.000621
3 Iterations: 1
4 Function evaluations: 3
5 Gradient evaluations: 3
6 INFO:CEVModel: CEVModel Results
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7 =====================================================================
8 Dep. Variable: y Hansen J: 3.768
9 Model: CEVModel Prob (Hansen J): 0.0523

10 Method: GMM
11 Date: Tue, 20 Aug 2024
12 Time: 16:01:04
13 No. Observations:6065
14 =====================================================================
15 coef std err z P>|z| [0.025 0.975]
16 --------------------------------------------------
17 mu 0.0704 0.036 1.944 0.052 -0.001 0.141
18 sigma 0.9704 nan nan nan nan nan
19 gamma 0.6821 nan nan nan nan nan
20 =====================================================================

The code for fitting the CEV model using GMM is shown in Listing 9-2.

Listing 9-2. Fitting Constant Elasticity of Variance Model to S&P 500 Prices Using GMM

1 import pandas as pd
2 import numpy as np
3 from statsmodels .sandbox. regression .gmm import GMM
4 import logging
5 import os
6

7 logging . basicConfig ( level =logging.DEBUG)
8

9

10 class CEVModel(GMM):
11 PRICE = "Close"
12 DELTAT = 1.0/251.0
13 logger = logging .getLogger("CEVModel")
14 N_MOMS = 4
15 N_PARAMS = 3
16

17 @staticmethod
18 def calculateInstrumentalVars (dirname, security ) :
19 CEVModel.logger = logging.getLogger("CEVModel")
20 df = pd.read_csv(os . path . join (dirname, f"{ security }.csv") , parse_dates =["Date"

])
21 prices = df . loc [:, CEVModel.PRICE].values
22 exog = np.column_stack(( prices [0:−2], prices [1:−1], prices [2:]) ) # (S(t−1), S(t

) , S(t+1))
23 endog = np.zeros (exog.shape [0], dtype=np. float32 ) # dummy
24 const = np.ones(exog.shape [0], dtype=np. int8 )
25 instruments = np.column_stack((const , prices [0:−2], prices [1:−1])) # (1, S(t

−1), S(t ) )
26 return endog, exog, instruments
27

28 def momcond(self, params):
29 mu, sigma, gamma = params
30 x = self .exog
31 z = self . instrument
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32 gtheta = x [:, 2] − x [:, 1] − mu ∗ x [:, 1] ∗ CEVModel.DELTAT
33 moment = np.multiply(z , gtheta [:, np.newaxis])
34 logReturn = np.log(x [:, 2] / x [:, 1])
35 meanLogRet = np.mean(logReturn)
36 volat = (sigma ∗∗ 2) ∗ (x [:, 1] ∗∗ (2∗(gamma − 1))) ∗ CEVModel.DELTAT
37 fourthMoment = ((logReturn − meanLogRet) ∗∗ 2) − volat
38 moment = np.column_stack((moment, fourthMoment))
39 return moment
40

41 def fitCEV( self ) :
42 params = np. array ([0, 0.0001, 0.7])
43 result = super () . fit (params, maxiter=100, optim_method='bfgs' , weights_method=

'hac' , wargs=dict( centered=False , maxlag=1))
44 CEVModel.logger.info( result .summary(xname=['mu', 'sigma' , ' gamma']))
45

46

47

48 if __name__ == "__main__":
49 dirname = r"C:\prog\cygwin\home\samit_000\latex \ book_stats \code\data"
50 security = "SPY"
51 endog, exog, instruments = CEVModel.calculateInstrumentalVars(dirname, security )
52 model1 = CEVModel(endog, exog, instruments, k_moms=CEVModel.N_MOMS, k_params

=CEVModel.N_PARAMS)
53 model1.fitCEV()

9.4.1 Code Explanation

Let us do a code walk-through for the code presented in Listing 9-2.

1. Before stepping through the execution order, let us first examine the code
design:

• Class CEVModel derives from the base class GMM. The base class
is defined inside the statsmodels library, in the package statsmod-
els.sandbox.regression.gmm.

• Class GMM requires deriving classes to implement a method momcond that
computes the moment conditions used by the GMM estimator. It receives
model parameters as an argument. In our case, we have three model parame-
ters. So the argument will be a three-element tuple.

• Class CEVModel specifies class-level variables that define the number of
moment conditions N_MOMS and the number of parameters N_PARAMS.

• The constructor of base class GMM accepts endogenous, exogenous, and
instrument variables as arguments, but these variables are not used anywhere.
They can be accessed as instance attributes. This makes them a convenient
location to keep variables that will be needed in the computation of moment
conditions.
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2. The code begins with calling a static method calculateInstrumentalVars
defined inside the class CEVModel. This method calculates and returns
endogenous, exogenous, and instrument variables. These variables are required
by the constructor of the base class.

3. An exogenous variable matrix is a two-dimensional matrix with St−
t , St , and
St+
t as columns.

4. An endogenous variable is a dummy array of zeros. It is not used anywhere.
5. An instrument variable is a two-dimensional matrix with 1, St−
t , and St as

columns.
6. Method fitCEV is called. This method does the following:

• Create a three-element parameter vector and initialize it.
• Call the fit method of the base class. This method is provided with the

following arguments:
– Initial values of parameters.
– Maximum number of GMM iterations.
– Optimization method. Here, we use the BFGS method.
– Method for computing weight matrix. Because market returns are known to

be heteroskedastic and may have autocorrelation, we use the heteroskedas-
ticity and autocorrelation consistent weight matrix. This is specified by
providing an argument “HAC.”

• The method for fitting GMM gets the moment conditions defined inside
the method momcond. This method computes the four moment conditions
defined in Equations 9-21, 9-22, 9-23, and 9-24.

• After fitting the model, it prints summary statistics with the computed
parameter values.
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Machine learning models are characterized by a rich variety of parameters that
impart them their functional versatility of modeling vast domains of data with
minimal handcrafted features. These models obviate the need for researchers to
craft a different set of features, adjust and recalibrate the model, and reexamine
the functional adequacy of the underlying model in the face of evolving data.
However, this versatility often comes at a price – the pitfall of overfitting on training
datasets but poor performance on test datasets. Notwithstanding the fact that some
machine learning models, such as random forests, are not prone to overfitting, the
vast majority of machine learning models featuring deep neural networks must be
scrupulously tested to make sure they are not overfitting. This is particularly true of
some of the large language models that have billions of free parameters.

Statistical models, on the other hand, are characterized by clear equations and
parameters. Their properties can be studied by analytical and numerical means
alike, and they often furnish confidence intervals and mathematical estimates on
goodness-of-fit that can provide a higher degree of confidence in their out-of-
sample performance. This modeling simplicity, however, comes at a cost. The
models require extensive tuning, data processing, and often handcrafting of features
(exogenous variables). They also require strong data distribution assumptions, such
as the underlying data generation process conforming with a family of analytically
tractable probability distributions – Gaussian, Poisson, gamma, and inverse gamma,
to name a few. These assumptions may not always be true, even if they hold in
training data. This could lead to unexpectedly low accuracy in certain test datasets,
necessitating model redesign.

These stylistic observations regarding strengths and weaknesses of machine
learning and statistical models pose the question if the two can be used collabo-
ratively. One paradigm where such a synergistic collaboration is possible is during
the phase of benchmarking machine learning models in order to provide a reference
against which their performance can be judged. If the machine learning model fails
to outperform the statistical model in a meaningful manner, it may highlight an
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opportunity to simplify the ML model or switch to a statistical model. On the other
hand, if the machine learning model yields appreciably better fit, one may envisage
using a statistical model as a tool for ensuring the prediction quality is maintained.
Furthermore, the benchmark can be a useful tool during both model design and
testing phases, affording a machine learning practitioner with concrete test cases
and a parallel modeling framework that can be compared to establish which parts of
a machine learning algorithm may benefit from improvements – feature engineering,
selection of activation functions, regularization, or neural network design.

Let us look at a few specific examples where statistical models can serve as
benchmarks for designing and testing machine learning models. In the ensuing
examples, the tensorflow library has been used to implement machine learning
models.

10.1 Predicting Asset Returns

Let us create a deep neural network to predict daily returns of the S&P 500 index.
While working on this example, we will focus on the following two objectives:

1. Deciding if a simple statistical model suffices for a modeling task or if it is
imperative to use a deep neural network for higher prediction accuracy

2. How to select the number of epochs for training a deep neural network

The endogenous variable is the daily return of the S&P 500 index, defined as
shown in Equation 10-1. In this equation, P(t) denotes the closing price on day t .

r(t) = P(t + 1)

P (t)
− 1 (10-1)

Let us use the following exogenous variables:

1. One-day lagged return, defined as shown in Equation 10-2.

r1DayLag(t) = P(t − 1)

P (t − 2)
− 1 (10-2)

2. Two-day lagged return, defined as shown in Equation 10-3.

r2DayLag(t) = P(t − 2)

P (t − 3)
− 1 (10-3)

3. Three-day lagged return, defined as shown in Equation 10-4.

r3DayLag(t) = P(t − 3)

P (t − 4)
− 1 (10-4)
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4. Three-day moving average of price subtracted from five-day moving average:
This feature measures price momentum. If three-day moving average is above
five-day moving average, it indicates recent price changes have been on the
upside relative to price changes over the past five days.

5. Relative volatility: This is defined as the ratio of 5-day (or 1-week) volatility of
returns to 21-day (or 1-month) volatility of returns.

6. Relative volume: This is defined as the ratio of three-day moving average of
volume to five-day moving average of volume. Volume represents the number of
shares traded on a day.

A deep neural network is constructed and is trained using stochastic gradient
descent with a batch size of 32. Figure 10-1 shows the training and testing RMS
errors obtained using the deep neural network as a function of training epochs.

Figure 10-1. RMS Errors on Training and Test Datasets of Deep Neural Network and OLS Model
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Two horizontal lines indicate the RMS errors obtained using the OLS model that
is trained on the same training dataset and tested on the test dataset – identical to the
datasets used for the neural network.

From Figure 10-1, we can observe that a simpler OLS model performs better
than the deep neural network. This illustrates a useful principle: when a simpler
statistical model can do a task just as well, there is little advantage to using a more
complex neural network model. OLS RMSE of 0.012378 on the training dataset and
0.011753 on the test dataset is lower than that obtained using the neural network for
all training epochs.

Secondly, training epochs of around 60 seem sufficient to train the network.
Beyond this, increasing the number of training epochs does not improve training
RMSE, while testing RMSE begins to increase. This is the pitfall of overfitting,
where slight gains in training accuracy come at the cost of falling accuracy on the
test dataset.

The code for fitting and benchmarking the deep neural network model using an
OLS model is shown in Listing 10-1.

Listing 10-1. Using OLS Model to Benchmark the Performance of a Neural Network

1 import numpy as np
2 import pandas as pd
3 import logging
4 import matplotlib.pyplot as plt
5 import tensorflow as tf
6 import os
7 import statsmodels.api as sm
8

9 logging.basicConfig(level=logging.DEBUG)
10

11

12 class AssetReturnPredictor:
13 PERIOD = 1
14 PRICE_COL = "Close"
15 VOLUME_COL = "Volume"
16

17 def __init__(self, dirname, security, trainTestRatio=0.9, maxEpochs
=100, batchSize=32):

18 self.logger = logging.getLogger(self.__class__.__name__)
19 self.dirname = dirname
20 self.security = security
21 self.maxEpochs = maxEpochs
22 self.batchSize = batchSize
23 self.df = pd.read_csv(os.path.join(dirname, f"{security}.csv"),

parse_dates=["Date"])
24 self.endog, self.exog = None, None
25 self.beginIndex = None
26 self.endIndex = None
27 self.calculateEndogExogVars()
28 self.ntraining = int(trainTestRatio * self.df.shape[0])
29 self.nn = None
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30 self.ols = self.createOLSModel()
31 self.olsFitted = False
32

33 def movingAverage(self, arr, period):
34 result = np.zeros(len(arr), dtype=np.float32)
35 sum1 = np.sum(arr[0:period])
36 for i in range(period, len(arr), 1):
37 result[i] = sum1 / period
38 sum1 += arr[i] - arr[i-period]
39 return result
40

41 def volatility(self, arr, lookback):
42 result = np.zeros(len(arr), dtype=np.float32)
43 sumsq = np.sum(arr[0:lookback] ** 2)
44 for i in range(lookback, len(arr), 1):
45 result[i] = sumsq / lookback
46 sumsq += arr[i]*arr[i] - arr[i-lookback]*arr[i-lookback]
47 return result
48

49 def calculateEndogExogVars(self):
50 prices = self.df.loc[:, self.PRICE_COL].values
51 returns = prices[self.PERIOD:] / prices[0:-self.PERIOD] - 1
52 self.df.loc[:, "returns"] = 0
53 self.df.loc[0:self.df.shape[0] - 1 - self.PERIOD, "returns"] =

returns
54 self.endog = "returns"
55

56 self.df.loc[:, "lag1Return"] = 0
57 self.df.loc[self.PERIOD+1:, "lag1Return"] = returns[0:self.df.shape

[0]-self.PERIOD-1]
58

59 self.df.loc[:, "lag2Return"] = 0
60 self.df.loc[self.PERIOD+2:, "lag2Return"] = returns[0:self.df.shape

[0]-self.PERIOD-2]
61

62 self.df.loc[:, "lag3Return"] = 0
63 self.df.loc[self.PERIOD+3:, "lag3Return"] = returns[0:self.df.shape

[0]-self.PERIOD-3]
64

65 self.df.loc[:, "ma3m5"] = 0
66 ma3 = self.movingAverage(prices, 3)
67 ma5 = self.movingAverage(prices, 5)
68 self.df.loc[5:, "ma3m5"] = ma3[5:] - ma5[5:]
69

70 volatility = self.volatility(returns, lookback=5)
71 moVolatility = self.volatility(returns, lookback=21)
72 relVolat = volatility[21:] / moVolatility[21:]
73 self.df.loc[:, "relVolatility"] = 0
74 self.df.loc[21:self.df.shape[0] - 1 - self.PERIOD, "relVolatility"]

= relVolat
75

76 volume = self.df.loc[:, self.VOLUME_COL].values
77 vol3 = self.movingAverage(volume, 3)
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78 vol5 = self.movingAverage(volume, 5)
79 relVolume = vol3[5:] / vol5[5:]
80 self.df.loc[:, "relVolume"] = 0
81 self.df.loc[5:, "relVolume"] = relVolume
82

83 self.exog = ["lag1Return", "lag2Return", "lag3Return", "ma3m5", "
relVolatility", "relVolume"]

84 self.beginIndex = 21
85 self.endIndex = self.df.shape[0] - self.PERIOD
86

87 def createNN(self):
88 nn = tf.keras.models.Sequential()
89 nn.add(tf.keras.layers.BatchNormalization())
90 nn.add(tf.keras.layers.Dense(30, activation=tf.keras.activations.

tanh))
91 nn.add(tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu))
92 nn.add(tf.keras.layers.Dense(30, activation=tf.nn.leaky_relu))
93 nn.add(tf.keras.layers.Dense(20))
94 nn.add(tf.keras.layers.Dense(5))
95 nn.add(tf.keras.layers.Dense(1, activation=tf.keras.activations.

tanh))
96 nn.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001)

, loss=tf.keras.losses.MeanSquaredError())
97 return nn
98

99 def fitNN(self, nepochs):
100 y = self.df.loc[self.beginIndex:self.ntraining, self.endog].values
101 X = self.df.loc[self.beginIndex:self.ntraining, self.exog].values
102 Xy = np.concatenate((X, y[:, np.newaxis]), axis=1)
103 np.random.shuffle(Xy)
104 X = Xy[:, 0:-1]
105 y = Xy[:, -1]
106 self.nn = self.createNN()
107 return self.nn.fit(X, y, batch_size=self.batchSize, epochs=nepochs)
108

109 def createOLSModel(self):
110 y = self.df.loc[self.beginIndex:self.ntraining, self.endog].values
111 X = self.df.loc[self.beginIndex:self.ntraining, self.exog].values
112 X = sm.add_constant(X, has_constant="add")
113 return sm.OLS(endog=y, exog=X)
114

115 def fitOLS(self):
116 if self.olsFitted:
117 return self.ols
118 self.ols = self.ols.fit()
119 self.olsFitted = True
120 return self.ols
121

122 def fit(self, nepochs):
123 self.fitOLS()
124 nnFitHistory = self.fitNN(nepochs)
125 return np.sqrt(nnFitHistory.history["loss"][-1])
126
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127 def testNN(self, y=None, X=None):
128 if y is None:
129 y = self.df.loc[self.ntraining:self.endIndex-1, self.endog].

values
130 X = self.df.loc[self.ntraining:self.endIndex-1, self.exog].

values
131 yhatNN = self.nn.predict(X)
132 rmseNN = np.sqrt(np.mean((y - yhatNN) ** 2))
133 return rmseNN
134

135 def testOLS(self, y=None, X=None):
136 if y is None:
137 y = self.df.loc[self.ntraining:self.endIndex-1, self.endog].

values
138 X = self.df.loc[self.ntraining:self.endIndex-1, self.exog].

values
139 Xols = sm.add_constant(X, has_constant="add")
140 yhatOls = self.ols.predict(exog=Xols)
141 rmseOLS = np.sqrt(np.mean((y - yhatOls) ** 2))
142 return rmseOLS
143

144 def trainingDatasetTestNN(self):
145 y = self.df.loc[self.beginIndex:self.ntraining, self.endog].values
146 X = self.df.loc[self.beginIndex:self.ntraining, self.exog].values
147 return self.testNN(y=y, X=X)
148

149 def trainingDatasetTestOLS(self):
150 y = self.df.loc[self.beginIndex:self.ntraining, self.endog].values
151 X = self.df.loc[self.beginIndex:self.ntraining, self.exog].values
152 return self.testOLS(y=y, X=X)
153

154 def plot(self, epochs, trainError, testError, olsErrorTrain,
olsErrorTest):

155 fig, axs = plt.subplots(1, 1, figsize=(10, 10))
156 axs.plot(epochs, trainError, label="NN Training RMSE")
157 axs.plot(epochs, testError, label="NN Testing RMSE")
158 axs.axhline(y=olsErrorTrain, color='r', linestyle='dashed', label="

OLS Training RMSE")
159 axs.axhline(y=olsErrorTest, color='g', linestyle='dashdot', label="

OLS Testing RMSE")
160 axs.set(title="Selecting Training Epochs for Deep Neural Network")
161 axs.legend()
162 axs.grid()
163 axs.set_xlabel("Epochs")
164 axs.set_ylabel("RMSE")
165 plt.savefig(os.path.join(self.dirname, f"AssetReturn_{self.security

}.jpeg"),
166 dpi=500)
167 plt.show()
168

169 def findOptimalTrainingEpochs(self):
170 epochs = list(range(10, self.maxEpochs, 10))
171 testError = []
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172 trainError = []
173 self.fitOLS()
174 olsErrorTrain = self.trainingDatasetTestOLS()
175 olsErrorTest = self.testOLS()
176 for epoch in epochs:
177 nnerror = self.fit(nepochs=epoch)
178 self.logger.info("Epoch: %d, Fitting RMSE: %f", epoch, nnerror)
179 nnErrorTrain = self.trainingDatasetTestNN()
180 nnErrorTest = self.testNN()
181 testError.append(nnErrorTest)
182 trainError.append(nnErrorTrain)
183 self.plot(epochs, trainError, testError, olsErrorTrain,

olsErrorTest)
184 self.logger.info("OLS RMS error on training dataset: %f, test

dataset: %f", olsErrorTrain, olsErrorTest)
185

186

187 if __name__ == "__main__":
188 dirname = r"C:\prog\cygwin\home\samit_000\latex\book_stats\code\data"
189 pred = AssetReturnPredictor(dirname, "SPY")
190 np.random.seed(32)
191 tf.random.set_seed(32)
192 pred.findOptimalTrainingEpochs()

10.1.1 Code Explanation

A code walk-through is presented below:

1. An instance of class AssetReturnPredictor is instantiated, passing the directory
name containing the data file and the name of the S&P 500 file as arguments.

2. Inside the constructor, the data file is read, and endogenous and exogenous
variables are computed, as described earlier. It should be noted that the code
avoids in-sample bias. That is, on day t , all exogenous variables can be calculated
using data available prior to day t .

3. Seeds for numpy and tensorflow random number generators are set for repro-
ducibility.

4. Method findOptimalTrainingEpochs is invoked on the object of class AssetRe-
turnPredictor. This method does the following:

• The OLS model is fitted using the training dataset. This dataset consists of the
first 90% of daily data from the security file for S&P 500. Since OLS model
fitting does not depend on training epochs, the OLS model is fitted just once.
The OLS model includes a constant because the neural network model uses
layers with bias.

• A neural network is created. This is a Sequential network consisting of seven
layers. Details of the neural network can be found in method createNN.

• The neural network uses an Adam stochastic gradient descent optimizer. This
optimizer was proposed by [35]. It takes the first moment (gradient) and the
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second moment (gradient-square) into account while computing parameter
updates. The inclusion of the second moment in the computation of parameter
correction makes Adam akin to Newton’s iterations that use gradient and
Hessian. A learning rate of 0.0001 is used in the Adam optimizer.

• The loss function is set to tf.keras.losses.MeanSquaredError.
• The neural network is fitted to the training dataset using the Adam optimizer.

A batch size of 32, along with a specified number of training epochs, is
used. This is performed inside method fitNN. Before fitting, the training data
is shuffled so that time-series correlation is broken. This is important when
stochastic gradient descent is used for updating parameters.

• The fitted neural network model is used to predict using training and test
datasets and RMSE computed using the actual value of S&P 500 returns.

• The above steps are repeated for a different number of training epochs, and a
plot of RMSE observed on training and test datasets is plotted as a function of
the number of epochs.

• RMSE for the OLS model using the same training and test datasets is overlaid
as horizontal lines on the plot.

10.2 Word2Vec

In the field of natural language processing (NLP), Word2Vec is a cornerstone
algorithm that marked the onset of an era characterized by rapid and unheralded
improvements in the quality of predictions in natural language tasks. The algorithm
was proposed in a seminal paper by [36] and demonstrated the principle that
dense word vector representations obtained from local word contexts could extract
meaningful word vector representations quantifying word similarity. The algorithm
is implemented in one of two ways:

1. Skipgram: This involves predicting context words using the center word in a
word-window.

2. CBOW: Acronym for continuous-bag-of-words, the model predicts the center
word of a window using context words (surrounding words).

Word2Vec does not use relative positional information of words in a sentence
into account. As long as a word is within a window, it has the same impact as other
words.

Statistical concepts such as SVD and cosine similarity can be used to benchmark
the quality of word vector representations produced by Word2Vec. In this section,
let us look at how we can use SVD for this purpose, in addition to using cosine
similarity for quantifying word similarity.

SVD, or singular value decomposition, was explained in the chapter on lin-
ear regression. Use of SVD for obtaining word vector representations predates
Word2Vec.
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Word2Vec (skipgram) learns dense vector representations of words by maximiz-
ing the objective function shown in Equation 10-5.

L(θ) = exp
(
θ0

T θc

)
∑

w∈V exp
(
θ0

T θw

)

V ≡ Vocabulary

θ0 ≡ Word vector for center word

θc ≡ Word vector for context word

(10-5)

By maximizing the likelihood expression in Equation 10-5, word vector rep-
resentations of a center word, θ0, and a context word, θc, become similar, while
those of center word with words that do not occur in its context become dissimilar.
Similarity is measured by the dot product between the word vectors. A key imple-
mentation impediment to a straightforward computation of Equation 10-5 involves
computation of the denominator which includes all words in the vocabulary.
Word2Vec uses negative sampling to make the computational cost more tractable.
Negative sampling involves randomly sampling a few words from the vocabulary.
For decent-sized vocabularies, random sampling will most likely pick words that do
not occur in the context of the center word. Word2Vec then appends one context
word to this list and computes the denominator using 1 + N words instead of using
all words in the vocabulary. N represents the number of negative samples selected
at random.

Table 10-1 shows the top five similar words to a group of ten randomly selected
words from the vocabulary. The code uses a rather limited vocabulary size of 1024.
Even with this small-sized vocabulary, Word2Vec word vectors reflect meaningful
word associations. For example, the word “may” is found to be semantically similar
to months of April, July, and June. At the same time, “may” can be used in another

Table 10-1. Words Similar to Ten Randomly Chosen Words from Vocabulary

Similar Similar Similar Similar Similar
word Word 1 Word 2 Word 3 Word 4 Word 5

may april will july june would

seeking seek approval want who move

meeting meet council ministers conference statement

mths oper vs qtr 3rd shrs

value 150 volume share because change

city trust inc industries lt corp

control seek acquire take way division

prime lending base cuts cut point

stocks liquidity tonnes tons sugar output

seasonally adjusted february rises index unemployment
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Figure 10-2. Visualizing 128-Dimensional Word Vectors from Word2Vec Using SVD

word sense – to connote the ability to do something. In this second sense, it is found
similar to words “will” and “would.”

Similarly, the word “meeting” is found to be similar to words “meet” and
“conference.” Because word vectors are learned using local context windows, words
that occur together frequently will show up with similar word vector representations,
even though they may have different meanings. This can be seen from the word
“seasonally” which is found to be most similar to the word “adjusted.” Even though
the two words mean something different, they frequently occur together in news
related to economics. The training corpus used in the code is derived from business
news, which explains this observation.

Figure 10-2 shows reduced dimensional visualization of ten most frequently
occurring words in the corpus. We have chosen a 128-dimensional word vector
space in this Word2Vec implementation. Visualizing word vectors in such high-
dimensional spaces is not easy. We use the statistical method of SVD to reduce
128-dimensional vectors to 10-dimensional vectors and visualize each of those
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vectors in 2 dimensions at a time. In Figure 10-2, subplots on the diagonal show
a histogram distribution of word vectors along each of the ten reduced dimensions.
We can observe that word vectors cluster into groups.

10.2.1 Code Explanation

Before performing a code walk-through of Word2Vec implementation in List-
ing 10-2, let us briefly recapitulate the training corpus used in the code along with
parameter settings:

1. We use the reuters corpus available using the nltk (Natural Language Toolkit)
API. This is a corpus comprising business news published by the Reuters news
agency.

2. A vocabulary size of 1024 is used. This is rather restrictive; in a practical
application, one would typically use a larger vocabulary size. The corpus has
30,952 unique words.

3. A window size of 3 is used. This means that three words before and three words
after a word are considered to be within the context of the center word. The
window shrinks if it oversteps the boundaries of a sequence.

4. A sequence length of 10 is used. This means that sentences are composed of
ten-word groups.

5. Five negative samples per positive sample are used to evaluate the denominator
in Equation 10-5.

6. Word vectors have 128 dimensions. This is a hyper-parameter that needs to be
adjusted to ascertain a good value for the application. Low dimensionality gives
greater bias (i.e., lower accuracy in both training and test datasets), while high
dimensionality gives high variance (good accuracy on the training dataset but
poor accuracy on the test dataset).

Listing 10-2. Fitting Word2Vec Model to Reuters Corpus Using a Vocabulary Size of 1024

1 import numpy as np
2 import tensorflow as tf
3 import tqdm
4 import string
5 import re
6 import logging
7 import pandas as pd
8 import matplotlib.pyplot as plt
9 from sklearn.decomposition import TruncatedSVD

10 import nltk
11 import os
12

13 logging.basicConfig(level=logging.DEBUG)
14

15
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16 class TextRetriever(object):
17 """ Utility class to read corpus """
18

19 @staticmethod
20 def standardize_text(input_text):
21 return re.sub("[%s]" % re.escape(string.punctuation), "",

input_text.lower())
22

23 @staticmethod
24 def tf_standardize_text(input_text):
25 lowercase = tf.strings.lower(input_text)
26 return tf.strings.regex_replace(lowercase,
27 '[%s]' % re.escape(string.punctuation),

'')
28

29 @staticmethod
30 def read_file(path_to_file):
31 vocab_size = 0
32 with open(path_to_file, "r") as f:
33 vocab_size = len(set(f.read().lower().split()))
34 return path_to_file, vocab_size
35

36 @staticmethod
37 def write_corpus_file(corpus_name, dirname):
38 corpus = getattr(nltk.corpus, corpus_name)
39 files = corpus.fileids()
40 filename = os.path.join(dirname, f"{corpus_name}.txt")
41 with open(filename, "w") as fp:
42 for f in files:
43 words = corpus.words(f)
44 for i in range(0, len(words), 10):
45 fp.write(' '.join(words[i:min(i+10, len(words))]) + '\n')
46 return filename
47

48

49 @staticmethod
50 def read_corpus(corpus_name, dirname, sequence_len, batch_size,

vocab_size=None):
51 file_name = TextRetriever.write_corpus_file(corpus_name, dirname)
52 path_to_file, vsz = TextRetriever.read_file(path_to_file=file_name)
53 if vocab_size is None:
54 vocab_size = vsz
55 text_ds = tf.data.TextLineDataset(path_to_file).filter(lambda x: tf

.cast(tf.strings.length(x), bool))
56 vectorize_layer = tf.keras.layers.TextVectorization(standardize=

TextRetriever.tf_standardize_text, max_tokens=vocab_size,
output_mode="int", output_sequence_length=sequence_len)

57 vectorize_layer.adapt(text_ds.batch(batch_size))
58 # returns vocabulary sorted in descending order by frequency
59 text_vector_ds = text_ds.batch(batch_size).prefetch(tf.data.

AUTOTUNE).map(vectorize_layer).unbatch()
60 sequences = list(text_vector_ds.as_numpy_iterator())
61 inverse_vocab = vectorize_layer.get_vocabulary()
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62 TextRetriever.inspect_dataset(sequences, inverse_vocab, 10)
63 return sequences, inverse_vocab, vocab_size
64

65 @staticmethod
66 def inspect_dataset(sequences, inverse_vocab, num_to_inspect):
67 logging.info(len(sequences))
68 end = min(num_to_inspect, len(sequences))
69 for seq in sequences[:end]:
70 logging.info(f"{seq} => {[inverse_vocab[i] for i in seq]}")
71

72

73 class Plotter(object):
74 @staticmethod
75 def plot_weights(weights, size, labels=None, dirname=None):
76 if size < weights.shape[1]:
77 weights = Plotter.reduce_to_k_dim(weights, size)
78 if labels is None:
79 labels = ["%d" % (i + 1) for i in range(size)]
80

81 data = pd.DataFrame(weights, columns=labels)
82 pd.plotting.scatter_matrix(data, alpha=0.2, diagonal='hist',

figsize=(10, 10))
83 if dirname:
84 plt.savefig(os.path.join(dirname, f"ReducedWts_Word2Vec.jpeg"),

dpi=500)
85 plt.show()
86

87 @staticmethod
88 def reduce_to_k_dim(M, k=2, n_iter=10):
89 """ Reduce a matrix M (n, m) to a matrix of dimensionality (n, k)

using the
90 following SVD function from Scikit-Learn:
91 - http://scikit-learn.org/stable/modules/generated/sklearn.

decomposition.TruncatedSVD.html
92

93 Params:
94 M (n,m): co-occurence matrix of word counts
95 k (int): embedding size of each word after dimension

reduction
96 Return:
97 M_reduced (numpy matrix of shape (number of corpus words, k)

): matrix of k-dimensioal word embeddings.
98 In terms of the SVD from math class, this actually

returns U * S
99 """

100 svd = TruncatedSVD(n_components=k, n_iter=n_iter)
101 return svd.fit_transform(M)
102

103

104 class Word2Vec(tf.keras.Model):
105 """ Skipgram model """
106
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107 def __init__(self, embedding_dim, num_neg_samples, window_size,
corpus_name, dirname,

108 batch_size=1024, seed=10, vocab_size=None, sequence_len=10,
109 buffer_size=10000):
110 super(Word2Vec, self).__init__()
111 self.dirname = dirname
112

113 self.sequences, self.inverse_vocab, self.vocab_size = TextRetriever
.read_corpus(corpus_name, dirname, sequence_len, batch_size,
vocab_size)

114 self.embedding_dim = embedding_dim
115 self.num_neg_samples = num_neg_samples
116 self.window_size = window_size
117 self.batch_size = batch_size
118 self.buffer_size = buffer_size
119 self.seed = seed
120 self.word_to_index_dict = {v: i for i, v in enumerate(self.

inverse_vocab)}
121 self.target_embedding = tf.keras.layers.Embedding(vocab_size,

embedding_dim, input_length=1, name="target_emb")
122 self.context_embedding = tf.keras.layers.Embedding(vocab_size,

embedding_dim, input_length=num_neg_samples + 1, name="
context_softmax_emb")

123 self.compile(optimizer="adam", loss=tf.keras.losses.
CategoricalCrossentropy(from_logits=True), metrics=["accuracy"
])

124

125 def call(self, pair):
126 target, context = pair
127 if len(target.shape) == 2:
128 target = tf.squeeze(target, axis=1)
129 word_embed = self.target_embedding(target)
130 context_embed = self.context_embedding(context)
131 dotprod = tf.einsum("ik,ijk->ij", word_embed, context_embed)
132 return dotprod
133

134 def generate_training_data(self):
135 """
136 Generates skip-gram pairs with negative sampling for a list of

sequences
137 (int-encoded sentences) based on window size, number of negative

samples
138 and vocabulary size.
139 """
140 targets, contexts, labels = [], [], []
141 sampling_table = tf.keras.preprocessing.sequence.

make_sampling_table(self.vocab_size)
142 for sequence in tqdm.tqdm(self.sequences):
143 positive_skipgrams, _ = tf.keras.preprocessing.sequence.

skipgrams(sequence, vocabulary_size=self.vocab_size,
sampling_table=sampling_table, window_size=self.window_size
, negative_samples=0)

144 for target_word, context_word in positive_skipgrams:
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145 context_class = tf.expand_dims(tf.constant([context_word],
dtype="int64"), 1)

146 neg_samples, _, _ = tf.random.log_uniform_candidate_sampler(
true_classes=context_class, num_true=1, num_sampled=self
.num_neg_samples, unique=True, range_max=self.vocab_size
, seed=self.seed, name="neg_sampling")

147 context = tf.concat([tf.squeeze(context_class, 1),
neg_samples], 0)

148 label = tf.constant([1] + [0] * self.num_neg_samples, dtype=
"int64")

149 targets.append(target_word)
150 contexts.append(context)
151 labels.append(label)
152

153 return np.array(targets), np.array(contexts), np.array(labels)
154

155 def fit(self, epochs=20):
156 targets, contexts, labels = self.generate_training_data()
157 dataset = tf.data.Dataset.from_tensor_slices(((targets, contexts),

labels))
158 dataset = dataset.shuffle(self.buffer_size).batch(self.batch_size,

drop_remainder=True)
159 super().fit(dataset, epochs=epochs)
160

161 def write_weights(self, file_name):
162 weights = self.target_embedding.get_weights()[0]
163 with open(file_name, "w") as fp:
164 for index, word in enumerate(self.inverse_vocab):
165 if index == 0:
166 continue # skip 0, it's padding.
167 vec = weights[index]
168 fp.write(word + "," + ",".join([str(x) for x in vec]) + "\n"

)
169

170 def get_weights(self, top_n=None, word_list=None):
171 if top_n:
172 word_list = self.inverse_vocab[1:top_n + 1]
173 weights = self.target_embedding.get_weights()[0]
174 indices = np.array([self.word_to_index_dict.get(w, 0) for w in

word_list])
175 return weights[indices, :], word_list
176

177 def cosine_similarity(self, top_n=None, word_list=None):
178 if top_n:
179 word_list = self.inverse_vocab[1:top_n + 1]
180 nwords = len(word_list)
181 weights = self.target_embedding.get_weights()[0]
182 indices = np.array([self.word_to_index_dict.get(w, 0) for w in

word_list])
183 wts = weights[indices, :]
184 lengths = np.sum(np.multiply(wts, wts), axis=1)
185 cosine = np.zeros((nwords, nwords), dtype=np.float64)
186 for i in range(nwords):
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187 cosine[i, i] = 1.0
188 for j in range(i):
189 cosine[i, j] = np.dot(wts[i, :], wts[j, :]) / np.sqrt(

lengths[i] * lengths[j])
190 cosine[j, i] = cosine[i, j]
191 return cosine, word_list
192

193 def length_similarity(self, top_n=None, word_list=None):
194 if top_n:
195 word_list = self.inverse_vocab[1:top_n + 1]
196 nwords = len(word_list)
197 weights = self.target_embedding.get_weights()[0]
198 indices = np.array([self.word_to_index_dict.get(w, 0) for w in

word_list])
199 wts = weights[indices, :]
200

201 lengths = np.zeros((nwords, nwords), dtype=np.float64)
202 for i in range(nwords):
203 for j in range(i):
204 dist = np.subtract(wts[i, :], wts[j, :])
205 lengths[i, j] = np.sqrt(np.dot(dist, dist))
206 lengths[j, i] = lengths[i, j]
207 return lengths, word_list
208

209 @staticmethod
210 def get_similar_words(weights_file, topN=6):
211 np.random.seed(64)
212 df = pd.read_csv(weights_file, header=None)
213 words = np.random.choice(df.shape[0], 10, replace=False)
214 similarWords = [[]]
215 for i in range(topN):
216 similarWords.append([])
217

218 for iword in words:
219 word = df.loc[iword, 0]
220 vec = df.loc[iword, 1:].values
221 l1 = np.dot(vec, vec)
222 cosineArr = []
223 for j in range(df.shape[0]):
224 if j == iword:
225 continue
226 word2 = df.loc[j, 0]
227 vec2 = df.loc[j, 1:].values
228 l2 = np.dot(vec2, vec2)
229 cosineSim = np.dot(vec, vec2) / np.sqrt(l1 * l2)
230 cosineArr.append((cosineSim, word2))
231 cosineArr.sort(key=lambda x: x[0], reverse=True)
232 similarWords[0].append(word)
233 for i in range(topN):
234 similarWords[i+1].append(cosineArr[i][1])
235

236 columns = ["word"] + ["SimWord%d" % (i+1) for i in range(topN)]
237 data = {c:arr for c,arr in zip(columns, similarWords)}
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238 df2 = pd.DataFrame(data=data)
239 logging.info(df2.to_latex(index=False))
240

241

242 if __name__ == "__main__":
243 embedding_dim = 128
244 num_neg_samples = 5
245 window_size = 3
246 corpus_name = "reuters"
247 vocab_size = 1024
248 sequence_len = 10
249 dirname = r"C:\prog\cygwin\home\samit_000\latex\book_stats\code\data"
250 word2vec = Word2Vec(embedding_dim, num_neg_samples, window_size,

corpus_name, dirname,
251 vocab_size=vocab_size,
252 sequence_len=sequence_len)
253 word2vec.fit()
254 weights_file = os.path.join(dirname, "weights.csv")
255 word2vec.write_weights(weights_file)
256

257 weights, words = word2vec.get_weights(top_n=10)
258 Plotter.plot_weights(weights, size=10, dirname=dirname)
259 logging.info(",".join(words))
260 logging.info(weights)
261

262 Word2Vec.get_similar_words(weights_file, topN=5)

With these assumptions in mind, let us look at the code following the order of
execution:

1. An object of class Word2Vec is instantiated with the following constructor
arguments:

• embedding_dim representing the word vector dimension. This is set to 128.
• num_neg_samples denoting the number of negative samples for each positive

sample for a context word and center word pair. This is set to 5.
• window_size of 3 representing context window length on both sides of the

center word.
• corpus_name set to “reuters” representing the name of the training corpus.
• dirname pointing to the directory name where the corpus file will be written

after being downloaded using the nltk API. This directory is also used for
writing weight vectors.

• vocab_size representing the vocabulary size of 1024. The corpus used
has 30,952 unique words. This means that the top 1024 most frequently
occurring words are considered to be in the vocabulary with the rest being
assigned a “UNK” (unknown) tag. Two special words “UNK” and “PAD”are
automatically added to the vocabulary. This means that the actual vocabulary
size is 1026. “PAD” is the word for padding. It is added to sequences that are
shorter than the specified sequence length to make them uniform in length.
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• sequence_len denotes the length of sequence and is set to ten. All word
sequences are of this length, i.e., ten words long. Sequence may end in the
middle of an actual sentence.

• Remaining arguments to the constructor use default values, such as
batch_size and buffer_size.

2. Inside the constructor, the following steps are performed:

• The training corpus is read inside the static method read_corpus of utility
class TextRetriever. This method downloads the corpus, chops the sentences
to ten-word long sequences, and writes them to a file.

• It reads the corpus data from the file and creates a tensorflow dataset using the
tf.data.TextLineDataset class.

• It creates an embedding layer of target word (or center word) and an
embedding for context words. The tf.keras.layers.Embedding layer is used
for the purpose. The target layer is applied to the center word, while the
context layer is applied to context words. After training has converged, the
two embeddings should be similar. We need separate embeddings for the two
because the context embedding layer is also applied to negatively sampled
words, i.e., randomly selected words that will most likely not occur in the
context of a center word.

• The loss function used is tf.keras.losses.CategoricalCrossentropy. This cal-
culates the expression shown in Equation 10-5 after providing the from_logits
argument with value True.

3. The fit method is called to train the model. This method does the following:

• Training data consisting of positive and negative skipgrams is constructed
inside the method generate_training_data.

• A dataset consisting of positive skipgrams (word-context pairs) and negative
skipgrams (one positive word-context pair along with five negative word-
context pairs), along with a set of labels with one indicating the pair occur
together and zero indicating they do not occur together in the window, is
created. The from_tensor_slices method is used.

• The model is fitted to training data using 20 epochs.

4. Trained word vectors are written to a file weights.csv.
5. Word vectors are visualized using SVD by reducing their dimensionality to ten.
6. To evaluate the quality of word vectors, ten random words are selected from the

vocabulary, and top five semantically similar words for each are reported. Cosine
similarity is used to measure the degree of similarity. This measure is defined in
Equation 10-6, where θ denotes a word vector.
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cosine sim.(θ1, θ2) = θ1
T θ2√(‖θ1‖2 ‖θ2‖2)

‖θ‖2 = θT θ

(10-6)

10.3 Glove

Glove is an acronym for global vectors for word representation. It was proposed
by [37] as an algorithm to bridge the apparent difference in word vector quality
obtained using statistical methods such as LSA (latent semantic analysis) and word-
window-based methods such as Word2Vec. Word vectors produced from Glove
were reported to perform better than LSA and Word2Vec in word analogy tasks.
More recent work has attempted to explain the performance of Pointwise Mutual
Information (PMI)-based methods such as LSA and context-based word vectors
such as Word2Vec and Glove in a unified framework and has attributed some of the
observed out-performance of Glove to the choice of hyper-parameters. Interested
readers are referred to [38].

The Glove algorithm for word vectors has the following salient features:

1. The algorithm uses a co-occurrence matrix computed by taking the logarithm
of word co-occurrence counts in context windows. It should be noted that LSA
(latent semantic analysis) uses a co-occurrence matrix for the whole document,
where the context spans the length of the entire document. Word2Vec, on the
other hand, considers a local context that is typically just a few words long. It
does not use a co-occurrence matrix.

2. The algorithm avoids computation of word vector products with all vocabulary
words needed in the denominator of Equation 10-5 by using co-occurrence
counts instead of negative sampling used in Word2Vec. The objective function
optimized in Glove is shown in Equation 10-7.

L(θ) =
‖V‖∑

i,j=1

f (Xi,j )
(
θi

T θj + bi + bj − log
(
Xi,j + 1

))

bi, bj are biases or intercepts for weight vectors θi, θj

f (Xi,j ) =
⎧⎨
⎩

(
Xi,j

100

)0.75
if Xi,j < 100

1 otherwise

(10-7)

In Equation 10-7, Xi,j is the co-occurrence matrix formed by counting the
number of times word j occurs in the context of word i. An addition of one is
required before taking the logarithm so that log

(
Xi,j + 1

)
stays well defined for

entries where the xi,j count is zero.
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Table 10-2. Words Similar to Ten Randomly Chosen Words from Vocabulary Found Using
Glove

Similar Similar Similar Similar Similar

word Word 1 Word 2 Word 3 Word 4 Word 5

may april july june march shipment

seeking seek financing currently usair proposals

meeting review special here report talks

mths months oper 89 39 12

value volume remaining australian number 600

city equipment computer southern europe chemical

control acquisitions computer impact steel usair

prime finance discount cuts base cut

stocks pipeline ships shipments sharply supplies

seasonally unemployment adjusted 69 discount rises

Let us implement Glove and analyze semantically similar words using cosine
similarity. As before, we will also use SVD to visualize the word vectors in addition
to using cosine similarity.

We select ten words at random from the vocabulary and use a cosine similarity
measure to determine the top five most similar words. Results are shown in
Table 10-2. We can observe improvement in the quality of word vectors obtained
using Glove, compared with Word2Vec. The word “may” has neighboring four
months as the top four most similar words. The algorithm is also able to identify
commonly used abbreviated words. For example, the word “months” is found to be
most similar to the abbreviated word “mths.” In other examples, we observe Glove
selecting similar words as those selected by Word2Vec. For example, “seasonally”
is adjudged to be similar to the word “adjusted.” This shows that Glove shares a few
shortcomings with Word2Vec owing to the fact that both use context windows to
determine word vectors and word similarity.

Figure 10-3 shows reduced dimensional visualization of ten most frequently
occurring words in the corpus. In Figure 10-3, subplots on the diagonal show a
histogram distribution of word vectors along each of the ten reduced dimensions.
As before, we can observe that word vectors cluster into groups.

The code for implementing and fitting the Glove model on the same corpus used
for training Word2Vec is shown in Listing 10-3.
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Figure 10-3. Visualizing 128-Dimensional Word Vectors from Glove Using SVD

Listing 10-3. Fitting Glove Model to Reuters Corpus Using a Vocabulary Size of 1024

1 import numpy as np
2 import tensorflow as tf
3 import tqdm
4 import logging
5 import pandas as pd
6 import matplotlib.pyplot as plt
7 from sklearn.decomposition import TruncatedSVD
8 from src.Word2Vec import TextRetriever
9 import os

10

11 logging.basicConfig(level=logging.DEBUG)
12

13

14 class WeightedMeanSquaredError(tf.keras.losses.Loss):
15 def __init__(self, xmax=100.0, power=0.75):
16 super().__init__()
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17 self.xmax = xmax
18 self.power = power
19

20 def call(self, y_true, y_pred):
21 xij = tf.exp(y_true) - 1
22 sample_weight = tf.where(xij < self.xmax, tf.pow(xij / self.xmax,

self.power), 1)
23 val = tf.math.square(y_true - y_pred)
24 return tf.math.reduce_mean(sample_weight * val)
25

26

27 class Glove(tf.keras.Model):
28 """ Word co-occurrence model """
29

30 def __init__(self, embedding_dim, window_size, corpus_name, dirname,
xmax=100, power=0.75,

31 skip_words=None, batch_size=1024, seed=10, vocab_size=None,
sequence_len=10,

32 buffer_size=10000):
33 super(Glove, self).__init__()
34 self.dirname = dirname
35

36 self.sequences, self.inverse_vocab, self.vocab_size = TextRetriever
.read_corpus(corpus_name, dirname, sequence_len, batch_size,
vocab_size)

37 self.embedding_dim = embedding_dim
38 self.window_size = window_size
39 self.batch_size = batch_size
40 self.buffer_size = buffer_size
41 self.seed = seed
42 self.skip_words = {}
43 if skip_words:
44 self.skip_words = set(skip_words)
45 self.co_occurrence_matrix = np.zeros((self.vocab_size, self.

vocab_size), dtype=np.int32)
46 self.word_to_index_dict = {v: i for i, v in enumerate(self.

inverse_vocab)}
47 self.target_embedding = tf.keras.layers.Embedding(vocab_size,

embedding_dim, input_length=1, name="target_emb")
48 self.context_embedding = tf.keras.layers.Embedding(vocab_size,

embedding_dim, input_length=1, name="context_emb")
49 self.bias_a = tf.keras.layers.Embedding(vocab_size, 1, input_length

=1, name="bias1")
50 self.bias_b = tf.keras.layers.Embedding(vocab_size, 1, input_length

=1, name="bias2")
51 self.compile(optimizer="adam", loss=WeightedMeanSquaredError(xmax=

xmax, power=power), metrics=["accuracy"])
52

53 def call(self, pair):
54 target, context = pair
55 if len(target.shape) == 2:
56 target = tf.squeeze(target, axis=1)
57 if len(context.shape) == 2:
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58 context = tf.squeeze(context, axis=1)
59 word_embed = self.target_embedding(target)
60 context_embed = self.context_embedding(context)
61 bias_a = tf.squeeze(self.bias_a(target), axis=1)
62 bias_b = tf.squeeze(self.bias_b(context), axis=1)
63 dotprod = tf.einsum("ij,ij->i", word_embed, context_embed)
64 return dotprod + bias_a + bias_b
65

66 def generate_training_data(self):
67 """
68 Generates skip-gram pairs for a list of sequences
69 (int-encoded sentences) based on window size, number of negative

samples
70 and vocabulary size.
71 """
72 targets, contexts = [], []
73 self.co_occurrence_matrix[:, :] = 0
74 for sequence in tqdm.tqdm(self.sequences):
75 positive_skipgrams, _ = tf.keras.preprocessing.sequence.

skipgrams(sequence, vocabulary_size=self.vocab_size,
window_size=self.window_size)

76 for target_word, context_word in positive_skipgrams:
77 if (self.inverse_vocab[target_word] in self.skip_words) or (
78 self.inverse_vocab[context_word] in self.skip_words):
79 continue
80 self.co_occurrence_matrix[target_word, context_word] += 1
81 self.co_occurrence_matrix[context_word, target_word] += 1
82 targets.append(target_word)
83 contexts.append(context_word)
84

85 return np.array(targets), np.array(contexts)
86

87 def fit(self, epochs=20):
88 targets, contexts = self.generate_training_data()
89 output = np.log(self.co_occurrence_matrix + 1)
90 dataset = tf.data.Dataset.from_tensor_slices(((targets, contexts),

output[targets, contexts]))
91 dataset = dataset.shuffle(self.buffer_size).batch(self.batch_size,

drop_remainder=True)
92 super().fit(dataset, epochs=epochs)
93

94 def write_weights(self, file_name):
95 weights = self.target_embedding.get_weights()[0]
96 with open(file_name, "w") as fp:
97 for index, word in enumerate(self.inverse_vocab):
98 if index == 0:
99 continue # skip 0, it's padding.

100 vec = weights[index]
101 fp.write(word + "," + ",".join([str(x) for x in vec]) + "\n"

)
102

103 def get_weights(self, top_n=None, word_list=None):
104 if top_n:
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105 word_list = self.inverse_vocab[1:top_n + 1]
106 weights = self.target_embedding.get_weights()[0]
107 indices = np.array([self.word_to_index_dict.get(w, 0) for w in

word_list])
108 return weights[indices, :], word_list
109

110 def cosine_similarity(self, top_n=None, word_list=None):
111 if top_n:
112 word_list = self.inverse_vocab[1:top_n + 1]
113 nwords = len(word_list)
114 weights = self.target_embedding.get_weights()[0]
115 indices = np.array([self.word_to_index_dict.get(w, 0) for w in

word_list])
116 wts = weights[indices, :]
117 lengths = np.sum(np.multiply(wts, wts), axis=1)
118 cosine = np.zeros((nwords, nwords), dtype=np.float64)
119 for i in range(nwords):
120 cosine[i, i] = 1.0
121 for j in range(i):
122 cosine[i, j] = np.dot(wts[i, :], wts[j, :]) / np.sqrt(

lengths[i] * lengths[j])
123 cosine[j, i] = cosine[i, j]
124 return cosine, word_list
125

126 def length_similarity(self, top_n=None, word_list=None):
127 if top_n:
128 word_list = self.inverse_vocab[1:top_n + 1]
129 nwords = len(word_list)
130 weights = self.target_embedding.get_weights()[0]
131 indices = np.array([self.word_to_index_dict.get(w, 0) for w in

word_list])
132 wts = weights[indices, :]
133

134 lengths = np.zeros((nwords, nwords), dtype=np.float64)
135 for i in range(nwords):
136 for j in range(i):
137 dist = np.subtract(wts[i, :], wts[j, :])
138 lengths[i, j] = np.sqrt(np.dot(dist, dist))
139 lengths[j, i] = lengths[i, j]
140 return lengths, word_list
141

142 @staticmethod
143 def get_similar_words(weights_file, topN=6):
144 np.random.seed(64)
145 df = pd.read_csv(weights_file, header=None)
146 words = np.random.choice(df.shape[0], 10, replace=False)
147 similarWords = [[]]
148 for i in range(topN):
149 similarWords.append([])
150

151 for iword in words:
152 word = df.loc[iword, 0]
153 vec = df.loc[iword, 1:].values
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154 l1 = np.dot(vec, vec)
155 cosineArr = []
156 for j in range(df.shape[0]):
157 if j == iword:
158 continue
159 word2 = df.loc[j, 0]
160 vec2 = df.loc[j, 1:].values
161 l2 = np.dot(vec2, vec2)
162 cosineSim = np.dot(vec, vec2) / np.sqrt(l1 * l2)
163 cosineArr.append((cosineSim, word2))
164 cosineArr.sort(key=lambda x: x[0], reverse=True)
165 similarWords[0].append(word)
166 for i in range(topN):
167 similarWords[i+1].append(cosineArr[i][1])
168

169 columns = ["word"] + ["SimWord%d" % (i+1) for i in range(topN)]
170 data = {c:arr for c,arr in zip(columns, similarWords)}
171 df2 = pd.DataFrame(data=data)
172 logging.info(df2.to_latex(index=False))
173

174

175 class Plotter(object):
176 @staticmethod
177 def plot_weights(weights, size, labels=None, dirname=None):
178 if size < weights.shape[1]:
179 weights = Plotter.reduce_to_k_dim(weights, size)
180 if labels is None:
181 labels = ["%d" % (i + 1) for i in range(size)]
182

183 data = pd.DataFrame(weights, columns=labels)
184 pd.plotting.scatter_matrix(data, alpha=0.2, diagonal='hist',

figsize=(10, 10))
185 if dirname:
186 plt.savefig(os.path.join(dirname, f"ReducedWts_Glove.jpeg"), dpi

=500)
187 plt.show()
188

189 @staticmethod
190 def reduce_to_k_dim(M, k=2, n_iter=10):
191 """ Reduce a matrix M (n, m) to a matrix of dimensionality (n, k)

using the
192 following SVD function from Scikit-Learn:
193 - http://scikit-learn.org/stable/modules/generated/sklearn.

decomposition.TruncatedSVD.html
194

195 Params:
196 M (n,m): co-occurence matrix of word counts
197 k (int): embedding size of each word after dimension

reduction
198 Return:
199 M_reduced (numpy matrix of shape (number of corpus words, k)

): matrix of k-dimensioal word embeddings.
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200 In terms of the SVD from math class, this actually
returns U * S

201 """
202 svd = TruncatedSVD(n_components=k, n_iter=n_iter)
203 return svd.fit_transform(M)
204

205

206 if __name__ == "__main__":
207 embedding_dim = 128
208 window_size = 3
209 corpus_name = "reuters"
210 dirname = r"C:\prog\cygwin\home\samit_000\latex\book_stats\code\data"
211 vocab_size = 1024
212 sequence_len = 10
213 glove = Glove(embedding_dim, window_size, corpus_name, dirname,

vocab_size=vocab_size, sequence_len=sequence_len)
214 glove.fit(epochs=2)
215 weights_file = os.path.join(dirname, "weights_glove.csv")
216 glove.write_weights(weights_file)
217

218 weights, words = glove.get_weights(top_n=10)
219 Plotter.plot_weights(weights, size=10, dirname=dirname)
220 logging.info(",".join(words))
221 logging.info(weights)
222

223 Glove.get_similar_words(weights_file, topN=5)

10.3.1 Code Explanation

The structure of the code is very similar to the code for Word2Vec. Therefore,
only portions of code with material difference from Word2Vec have been explained
at length. The training corpus and most parameter settings are the same as in
Word2Vec and have been summarized in Table 10-3.

1. The code begins with the instantiation of an object of class Glove. This class
derives from tf.models.Model which is the base class of all tensorflow neural
network models.

Table 10-3.
Hyper-parameters Used to
Train Glove Model

Name Value

Training Corpus reuters (NLTK)

Vocabulary Size 1024

Context Window Size 3

Embedding Dimension 128

Sequence Length 10

Batch Size 1024

Training Epochs 2



280 10 Benchmarking Machine Learning Models

2. Inside the constructor, following steps are performed:

• The training corpus is read, and a vocabulary is constructed. Sequences
conforming to the provided sequence length of ten are created.

• A word co-occurrence matrix is computed using local context windows.
Around each word (center word), neighboring words within the window are
considered as context words as the co-occurrence count is updated. This is
done for all words in the corpus.

• Target embedding and context embedding are created as embedding layers
of type tf.keras.layers.Embedding. Because Glove does not use negative
sampling, the context embedding layer is of the same dimensions as the target
embedding layer: accepting an input of 1026 dimensions (vocabulary size
+ 2) and producing a 128-dimensional word vector. The input dimension is
1026 because two special words “UNK” for out-of-vocabulary words and
“PAD” for padding word are appended to the vocabulary size, which has been
specified as 1024.

• Two bias layers of type tf.keras.layers.Embedding are created. These layers
accept a vocabulary-sized vector and transform it to a scalar. There are two
biases: one applied to the target word and another applied to the context word.

• An optimizer is created. The Adam optimizer is used.
• The loss function used is shown in Equation 10-7. This is implemented as a

weighted mean square error inside the class WeightedMeanSquaredError.
This class derives from tf.keras.losses.Loss and calculates the loss function.

3. Following this, the model is trained. SVD is used for visualizing the word vectors
in a reduced ten-dimensional space.

4. As before, a cosine similarity measure is used to identify top five similar words
for ten randomly chosen words.

10.4 Regression Using Random Forest

Random forests were studied extensively in an earlier chapter where we observed
that they can be used for classification, regression, and clustering. In this section, let
us use random forests for regression and look at how we can select the number of
estimators or trees. Further, we will look at benchmarking the regression using the
OLS model.

The setup of this model is very similar to that used for predicting asset returns.
We predict daily S&P 500 returns using the same set of features as used in
Section 10.1.

In random forests, a key hyper-parameter is the number of estimators or trees.
We will select an optimum value for this parameter.

Figure 10-4 shows the variation of RMSE on testing and training datasets for
random forest as a function of estimators or trees. Overlaid on top are two horizontal
lines showing RMSE for the OLS model in training and test datasets.
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Figure 10-4. RMS Errors on Training and Test Datasets of Random Forest and OLS Model

We can make the following observation from Figure 10-4:

1. Random forest is not overfitting. This can be seen from the fact that RMSE
does not go up on either testing or training datasets with increasing number of
estimators or decision trees in the forest.

2. Around 75 trees seem to give optimal error reduction in training and test datasets.
Beyond this, the improvement in accuracy is minimal.

3. Benchmarking random forest with the OLS model, we observe that random forest
performs significantly better in the training dataset. In the test dataset, the OLS
model performs marginally better. However, because we expect testing errors to
be generally higher than training errors, there is a reason to believe that testing
errors obtained using the OLS model will go up as new data arrives. Using
existing data, RMSE on the test dataset for random forest is only marginally
higher than that of OLS. In light of the previous observation, it is advisable to
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use random forest for obtaining higher accuracy in predictions for this task as
compared with OLS. Furthermore, it would be advisable to use the OLS model as
a benchmarking tool on a continuous basis to monitor the accuracy of predictions
from random forest as new data becomes available.

The code for fitting random forest is shown in Listing 10-4.

Listing 10-4. Using OLS Model to Benchmark the Performance of a Random Forest

1 import numpy as np
2 import pandas as pd
3 import logging
4 import matplotlib.pyplot as plt
5 from sklearn.ensemble import RandomForestRegressor
6 import os
7 import statsmodels.api as sm
8

9 logging.basicConfig(level=logging.DEBUG)
10

11

12 class RandomForestPredictor:
13 PERIOD = 1
14 PRICE_COL = "Close"
15 VOLUME_COL = "Volume"
16

17 def __init__(self, dirname, security, trainTestRatio=0.9, maxTrees=200,
batchSize=32):

18 self.logger = logging.getLogger(self.__class__.__name__)
19 self.dirname = dirname
20 self.security = security
21 self.maxTrees = maxTrees
22 self.batchSize = batchSize
23 self.df = pd.read_csv(os.path.join(dirname, f"{security}.csv"),

parse_dates=["Date"])
24 self.endog, self.exog = None, None
25 self.beginIndex = None
26 self.endIndex = None
27 self.calculateEndogExogVars()
28 self.ntraining = int(trainTestRatio * self.df.shape[0])
29 self.nn = None
30 self.ols = self.createOLSModel()
31 self.rf = None
32

33 def movingAverage(self, arr, period):
34 result = np.zeros(len(arr), dtype=np.float32)
35 sum1 = np.sum(arr[0:period])
36 for i in range(period, len(arr), 1):
37 result[i] = sum1 / period
38 sum1 += arr[i] - arr[i-period]
39 return result
40

41 def volatility(self, arr, lookback):
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42 result = np.zeros(len(arr), dtype=np.float32)
43 sumsq = np.sum(arr[0:lookback] ** 2)
44 for i in range(lookback, len(arr), 1):
45 result[i] = sumsq / lookback
46 sumsq += arr[i]*arr[i] - arr[i-lookback]*arr[i-lookback]
47 return result
48

49 def calculateEndogExogVars(self):
50 prices = self.df.loc[:, self.PRICE_COL].values
51 returns = prices[self.PERIOD:] / prices[0:-self.PERIOD] - 1
52 self.df.loc[:, "returns"] = 0
53 self.df.loc[0:self.df.shape[0] - 1 - self.PERIOD, "returns"] =

returns
54 self.endog = "returns"
55

56 self.df.loc[:, "lag1Return"] = 0
57 self.df.loc[self.PERIOD+1:, "lag1Return"] = returns[0:self.df.shape

[0]-self.PERIOD-1]
58

59 self.df.loc[:, "lag2Return"] = 0
60 self.df.loc[self.PERIOD+2:, "lag2Return"] = returns[0:self.df.shape

[0]-self.PERIOD-2]
61

62 self.df.loc[:, "lag3Return"] = 0
63 self.df.loc[self.PERIOD+3:, "lag3Return"] = returns[0:self.df.shape

[0]-self.PERIOD-3]
64

65 self.df.loc[:, "ma3m5"] = 0
66 ma3 = self.movingAverage(prices, 3)
67 ma5 = self.movingAverage(prices, 5)
68 self.df.loc[5:, "ma3m5"] = ma3[5:] - ma5[5:]
69

70 volatility = self.volatility(returns, lookback=5)
71 moVolatility = self.volatility(returns, lookback=21)
72 relVolat = volatility[21:] / moVolatility[21:]
73 self.df.loc[:, "relVolatility"] = 0
74 self.df.loc[21:self.df.shape[0] - 1 - self.PERIOD, "relVolatility"]

= relVolat
75

76 volume = self.df.loc[:, self.VOLUME_COL].values
77 vol3 = self.movingAverage(volume, 3)
78 vol5 = self.movingAverage(volume, 5)
79 relVolume = vol3[5:] / vol5[5:]
80 self.df.loc[:, "relVolume"] = 0
81 self.df.loc[5:, "relVolume"] = relVolume
82

83 self.exog = ["lag1Return", "lag2Return", "lag3Return", "ma3m5", "
relVolatility", "relVolume"]

84 self.beginIndex = 21
85 self.endIndex = self.df.shape[0] - self.PERIOD
86

87 def fitRF(self, ntrees):
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88 self.rf = self.rf = RandomForestRegressor(n_estimators=ntrees,
random_state=0)

89 y = self.df.loc[self.beginIndex:self.ntraining, self.endog].values
90 X = self.df.loc[self.beginIndex:self.ntraining, self.exog].values
91 self.rf = self.rf.fit(X, y)
92 yhat = self.rf.predict(X)
93 rmseRF = np.sqrt(np.mean((y - yhat) ** 2))
94 return rmseRF
95

96 def createOLSModel(self):
97 y = self.df.loc[self.beginIndex:self.ntraining, self.endog].values
98 X = self.df.loc[self.beginIndex:self.ntraining, self.exog].values
99 X = sm.add_constant(X, has_constant="add")

100 return sm.OLS(endog=y, exog=X)
101

102 def fitOLS(self):
103 self.ols = self.ols.fit()
104 return self.ols
105

106 def testRF(self, y, X):
107 yhatRF = self.rf.predict(X)
108 rmseRF = np.sqrt(np.mean((y - yhatRF) ** 2))
109 return rmseRF
110

111 def testOLS(self, y, X):
112 Xols = sm.add_constant(X, has_constant="add")
113 yhatOls = self.ols.predict(exog=Xols)
114 rmseOLS = np.sqrt(np.mean((y - yhatOls) ** 2))
115 return rmseOLS
116

117 def plot(self, trees, trainError, testError, olsErrorTrain,
olsErrorTest):

118 fig, axs = plt.subplots(1, 1, figsize=(10, 10))
119 axs.plot(trees, trainError, label="RF Training RMSE")
120 axs.plot(trees, testError, label="RF Testing RMSE")
121 axs.axhline(y=olsErrorTrain, color='r', linestyle='dashed', label="

OLS Training RMSE")
122 axs.axhline(y=olsErrorTest, color='g', linestyle='dashdot', label="

OLS Testing RMSE")
123 axs.set(title="Selecting Number of Estimators (Trees) for Random

Forest")
124 axs.legend()
125 axs.grid()
126 axs.set_xlabel("Estimators")
127 axs.set_ylabel("RMSE")
128 plt.savefig(os.path.join(self.dirname, f"AssetReturnRF_{self.

security}.jpeg"),
129 dpi=500)
130 plt.show()
131

132 def findOptimalTrainingEstimators(self):
133 ntrees = list(range(10, self.maxTrees, 10))
134 testError = []
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135 trainError = []
136 self.fitOLS()
137 ytrain = self.df.loc[self.beginIndex:self.ntraining, self.endog].

values
138 Xtrain = self.df.loc[self.beginIndex:self.ntraining, self.exog].

values
139 ytest = self.df.loc[self.ntraining:self.endIndex - 1, self.endog].

values
140 Xtest = self.df.loc[self.ntraining:self.endIndex - 1, self.exog].

values
141 olsErrorTrain = self.testOLS(ytrain, Xtrain)
142 olsErrorTest = self.testOLS(ytest, Xtest)
143 for ntree in ntrees:
144 nnerror = self.fitRF(ntrees=ntree)
145 self.logger.info("Estimators: %d, Fitting RMSE: %f", ntree,

nnerror)
146 rfErrorTrain = self.testRF(ytrain, Xtrain)
147 rfErrorTest = self.testRF(ytest, Xtest)
148 testError.append(rfErrorTest)
149 trainError.append(rfErrorTrain)
150 self.plot(ntrees, trainError, testError, olsErrorTrain,

olsErrorTest)
151 self.logger.info("OLS RMS error on training dataset: %f, test

dataset: %f", olsErrorTrain, olsErrorTest)
152

153

154 if __name__ == "__main__":
155 dirname = r"C:\prog\cygwin\home\samit_000\latex\book_stats\code\data"
156 pred = RandomForestPredictor(dirname, "SPY")
157 np.random.seed(32)
158 pred.findOptimalTrainingEstimators()

10.4.1 Code Explanation

Because the code is very similar to the one presented in Section 10.1, only
the sections having random forest–specific code are explained in detail below.
Remaining sections are identical to the code presented earlier.

1. Random forest regressor is created using the class RandomForestPredictor
from library sklearn.ensemble. The constructor is provided with two argu-
ments:

• Number of estimators, n_estimators.
• random_state: This value is used to initialize the random number generator

inside sklearn. To promote reproducibility of results, it is recommended to
provide a value for this argument.

2. For each setting on n_estimators, random forest is fitted to 90% of data. The
remaining 10% of data comprises the test dataset.
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